Keywords: anisotropy of properties, equation of state, single crystal, dynamic loading.
@article{VTGU_2022_79_a7,
author = {M. N. Krivosheina},
title = {Simulation of the stress state in barriers made of anisotropic materials},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {89--99},
year = {2022},
number = {79},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/}
}
TY - JOUR AU - M. N. Krivosheina TI - Simulation of the stress state in barriers made of anisotropic materials JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 89 EP - 99 IS - 79 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/ LA - ru ID - VTGU_2022_79_a7 ER -
M. N. Krivosheina. Simulation of the stress state in barriers made of anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 89-99. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/
[1] Bogach A.A., Kanel' G.I., Razorenov S.V., Utkin A.V., “Resistance of zinc crystals to shock deformation and fracture at elevated temperatures”, Phys. Solid State, 40:10 (1998), 1676–1680 | DOI
[2] Bezruchko G.S., Kanel G.I., Razorenov S.V., “O predele tekuchesti monokristallov tsinka pri odnomernom szhatii v ploskoi udarnoi volne”, Zhurnal tekhnicheskoi fiziki, 75:5 (2005), 92–95 | DOI
[3] Bezruchko G.S., Kanel G.I., Razorenov S.V., “Szhimaemost monokristallov tsinka v oblasti polozhitelnykh i otritsatelnykh davlenii”, Teplofizika vysokikh temperatur, 42:2 (2004), 262–268 | DOI
[4] Abdullaev N.A., “Parametry Gryunaizena v sloistykh kristallakh”, Fizika tverdogo tela, 43:4 (2001), 697–700
[5] Novikova S.I., Teplovoe rasshirenie tverdykh tel, Nauka, M., 1974, 292 pp.
[6] Belomestnykh V.N., Tesleva E.P., Soboleva E.G., “Maksimalnyi parametr Gryunaizena pri polimorfnykh prevrascheniyakh v kristallakh”, Zhurnal tekhnicheskoi fiziki, 79:2 (2009), 153–154 | DOI
[7] Kolarov D., Baltov A., Boncheva N., Mekhanika plasticheskikh sred, Mir, M., 1974, 304 pp.
[8] Cairns A.B., Goodwin A.L., “Negative linear compressibility”, Physical Chemistry Chemical Physics, 17:32 (2015), 20449–21020 | DOI
[9] Vignjevic R., Djordjevic N., Panov V., “Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure”, Int. J. Plasticity, 38 (2012), 47–85 | DOI
[10] Mason W.P., Physical Acoustics: Principles and methods, pt. B: Lattice Dynamics, v. III, Academic Press, New York-London, 1965, xix+336 pp.
[11] Sedov L.I., Mekhanika sploshnykh sred, v. 2, Nauka, M., 1976, 574 pp.
[12] Krivosheina M.N., Tuch E.V., Kobenko S.V., “Simulation of the Crack Distribution at the “Viscous” of the Destruction of the HCP-Single Crystals in the Plane (10\=10)”, AIP Conference Proceedings, 2051, 2018, 020153 | DOI
[13] Wilkins M.L., Computer Simulation of Dynamic Phenomena, Springer Verlag, 1999, 247 pp.
[14] Anderson Ch.E., Cox P.A., Johnson G.R., Maudlin P.J., “A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer program-II”, Computational Mechanics, 15 (1994), 201–223 | DOI
[15] Johnson J.N., “Dynamic fracture and spallation in ductile solids”, j. Appl. Phys., 52:4 (1981), 2812–2825