Simulation of the stress state in barriers made of anisotropic materials
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 89-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To study the properties of anisotropic materials, a mathematical model is proposed that accounts for the anisotropy of elastic and plastic properties, as well as the anisotropy of “thermal” and “cold” components of pressure. The model is applied in a threedimensional simulation of the deformation of an HCP-single-crystal barrier under impact loading by an aluminum impactor. The numerical simulation results are obtained using the dynamic finite element method with a difference scheme modified to account for the anisotropy of “cold” and “thermal” pressure components. To simulate the anisotropy of the stress deviator in the region of elastic deformations, generalized Hooke's law is used, while in the region of plastic deformations, the Mises-Hill plasticity function (Hill48) is used with account for the anisotropy of elastic properties and anisotropy of the Gruneisen coefficient. The experimentally and numerically obtained velocity profiles of the back surfaces of single-crystal zinc barriers during the spall fracture are compared with each other. When the impact loading direction coincides with [0001] axis, the elastic precursor is not observed on the velocity profile calculated numerically, which is the same for the one derived experimentally. This effect may be explained only with the use of anisotropic pressur.
Mots-clés : Gruneisen coefficient
Keywords: anisotropy of properties, equation of state, single crystal, dynamic loading.
@article{VTGU_2022_79_a7,
     author = {M. N. Krivosheina},
     title = {Simulation of the stress state in barriers made of anisotropic materials},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {89--99},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/}
}
TY  - JOUR
AU  - M. N. Krivosheina
TI  - Simulation of the stress state in barriers made of anisotropic materials
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 89
EP  - 99
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/
LA  - ru
ID  - VTGU_2022_79_a7
ER  - 
%0 Journal Article
%A M. N. Krivosheina
%T Simulation of the stress state in barriers made of anisotropic materials
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 89-99
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/
%G ru
%F VTGU_2022_79_a7
M. N. Krivosheina. Simulation of the stress state in barriers made of anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 89-99. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a7/

[1] Bogach A.A., Kanel' G.I., Razorenov S.V., Utkin A.V., “Resistance of zinc crystals to shock deformation and fracture at elevated temperatures”, Phys. Solid State, 40:10 (1998), 1676–1680 | DOI

[2] Bezruchko G.S., Kanel G.I., Razorenov S.V., “O predele tekuchesti monokristallov tsinka pri odnomernom szhatii v ploskoi udarnoi volne”, Zhurnal tekhnicheskoi fiziki, 75:5 (2005), 92–95 | DOI

[3] Bezruchko G.S., Kanel G.I., Razorenov S.V., “Szhimaemost monokristallov tsinka v oblasti polozhitelnykh i otritsatelnykh davlenii”, Teplofizika vysokikh temperatur, 42:2 (2004), 262–268 | DOI

[4] Abdullaev N.A., “Parametry Gryunaizena v sloistykh kristallakh”, Fizika tverdogo tela, 43:4 (2001), 697–700

[5] Novikova S.I., Teplovoe rasshirenie tverdykh tel, Nauka, M., 1974, 292 pp.

[6] Belomestnykh V.N., Tesleva E.P., Soboleva E.G., “Maksimalnyi parametr Gryunaizena pri polimorfnykh prevrascheniyakh v kristallakh”, Zhurnal tekhnicheskoi fiziki, 79:2 (2009), 153–154 | DOI

[7] Kolarov D., Baltov A., Boncheva N., Mekhanika plasticheskikh sred, Mir, M., 1974, 304 pp.

[8] Cairns A.B., Goodwin A.L., “Negative linear compressibility”, Physical Chemistry Chemical Physics, 17:32 (2015), 20449–21020 | DOI

[9] Vignjevic R., Djordjevic N., Panov V., “Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure”, Int. J. Plasticity, 38 (2012), 47–85 | DOI

[10] Mason W.P., Physical Acoustics: Principles and methods, pt. B: Lattice Dynamics, v. III, Academic Press, New York-London, 1965, xix+336 pp.

[11] Sedov L.I., Mekhanika sploshnykh sred, v. 2, Nauka, M., 1976, 574 pp.

[12] Krivosheina M.N., Tuch E.V., Kobenko S.V., “Simulation of the Crack Distribution at the “Viscous” of the Destruction of the HCP-Single Crystals in the Plane (10\=10)”, AIP Conference Proceedings, 2051, 2018, 020153 | DOI

[13] Wilkins M.L., Computer Simulation of Dynamic Phenomena, Springer Verlag, 1999, 247 pp.

[14] Anderson Ch.E., Cox P.A., Johnson G.R., Maudlin P.J., “A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer program-II”, Computational Mechanics, 15 (1994), 201–223 | DOI

[15] Johnson J.N., “Dynamic fracture and spallation in ductile solids”, j. Appl. Phys., 52:4 (1981), 2812–2825