Keywords: wedge-shaped layer, thin gap.
@article{VTGU_2022_79_a5,
author = {P. V. Kaurov},
title = {Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {69--77},
year = {2022},
number = {79},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/}
}
TY - JOUR AU - P. V. Kaurov TI - Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 69 EP - 77 IS - 79 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/ LA - ru ID - VTGU_2022_79_a5 ER -
%0 Journal Article %A P. V. Kaurov %T Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 69-77 %N 79 %U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/ %G ru %F VTGU_2022_79_a5
P. V. Kaurov. Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 69-77. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/
[1] Slezkin N.A., Dinamika vyazkoi neszhimaemoi zhidkosti, GITTL, M., 1955, 521 pp.
[2] Pozrikidis C., Fluid Dynamics. Theory, Computation, and Numerical Simulation, 3th ed., Springer, New York, 2017, 912 pp. | DOI
[3] Hutterr K., Wang Y., Fluid and Thermodynamics, v. 1, Basic Fluid Mechanics, Springer, New York, 2016, 652 pp. | DOI
[4] Deng X., Watson C., “Lubricant Inertia in Water Lubricated Bearings”, Proceedings of the 29th Symposium on Fluid Machinery, 2017, 1–8 | DOI
[5] Javorova J.G., “On the method of averaged inertia at hydrodynamic lubrication with fluid inertia effects: a review”, Vestnik Severo-Kazakhstanskogo Universiteta im. M. Kozybaeva. Ser. Tekhnicheskie nauki, 3:36 (2017), 5–10
[6] Singh U.P., “Effects of surface roughness and supply inertia on steady performance of hydro static thrust bearings lubricated with non-newtonian fluids”, Journal of Mechanical Engineering, 71:2 (2021), 317–328 | DOI
[7] Ghosh K.C., Mazumder S.K., “Steady State Performance Characteristics of Isoviscous Finite Flexible Oil Journal Bearings Including Fluid Inertia Effect”, International Journal of Engineering Research Technology, 6:7 (2017), 318–326 | DOI
[8] Tieshu F., Sina H., “The effect of lubricant inertia on fluid cavitation for high-speed squeeze film dampers”, Journal of Vibroengineering, 19:8 (2017), 6122–6134 | DOI
[9] Sina H., Kamran B., “A Study of Lubricant Inertia Effects for Squeeze Film Dampers Incorporated into High-Speed Turbomachinery”, Lubricants, 5:4 (2017), 1–29 | DOI
[10] Singh U.P., Sinha P., “Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235:2 (2020), 386395 | DOI
[11] Walicka A., Jurczak P., “Influence of total inertia effects in a thrust curvilinear bearing lubricated with Newtonian Lubricants”, Int. J. of Applied Mechanics and Engineering, 22:4 (2017), 1045–1058 | DOI
[12] Borisevich V.D., Potanin E.P., “Ispolzovanie preobrazovaniya Dorodnitsyna dlya analiza teplo- i massoperenosa vo vraschayuschikhsya potokakh”, Prikladnaya matematika i mekhanika, 85:6 (2021), 758–771 | DOI
[13] Akhverdiev K.S., Bolgova E.A., “Gidrodinamicheskii raschet klinovidnoi sistemy «polzun-napravlyayuschaya», rabotayuschei na szhimaemom smazochnom materiale v usloviyakh nalichiya rasplava na poverkhnosti napravlyayuschei”, Omskii nauchnyi vestnik, 2:176 (2021), 10–14 | DOI
[14] Mukutadze M.A., Khasyanova D.U., “Gidrodinamicheskaya model klinovidnoi opory skolzheniya s legkoplavkim metallicheskim pokrytiem”, Problemy mashinostroeniya i nadezhnosti mashin, 2020, no. 4, 51–58 | DOI