Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Reynolds equations are solved with account for inertial forces in a plane wedge-shaped layer using the Slezkin-Targ method. The analytical expressions determining the dimensionless longitudinal velocity, hydrodynamic pressure, and total pressure force as functions of the lubricating Reynolds number and dimensionless parameter of the problem are obtained. A new method for solving the Reynolds equations is proposed accounting for inertial forces and avoiding averaging the inertial terms with respect to the gap height. The numerical analysis of the proposed method shows that in the first and second approximations, the deviations for the total hydrodynamic pressure force in a plane wedge-shaped layer differ little from each other in the considered range of the lubricating Reynolds number for varying dimensionless parameter of the problem, but exceed the deviation obtained using the Slezkin-Targ method. The coincidence of the first approximation with the second one gives ground to believe that the proposed method is more accurate for calculating the total hydrodynamic pressure force in the fluid flow occurring in a plane wedge-shaped layer.
Mots-clés : viscous fluid, inertial forces, hydrodynamic pressure
Keywords: wedge-shaped layer, thin gap.
@article{VTGU_2022_79_a5,
     author = {P. V. Kaurov},
     title = {Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {69--77},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/}
}
TY  - JOUR
AU  - P. V. Kaurov
TI  - Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 69
EP  - 77
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/
LA  - ru
ID  - VTGU_2022_79_a5
ER  - 
%0 Journal Article
%A P. V. Kaurov
%T Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 69-77
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/
%G ru
%F VTGU_2022_79_a5
P. V. Kaurov. Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 69-77. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a5/

[1] Slezkin N.A., Dinamika vyazkoi neszhimaemoi zhidkosti, GITTL, M., 1955, 521 pp.

[2] Pozrikidis C., Fluid Dynamics. Theory, Computation, and Numerical Simulation, 3th ed., Springer, New York, 2017, 912 pp. | DOI

[3] Hutterr K., Wang Y., Fluid and Thermodynamics, v. 1, Basic Fluid Mechanics, Springer, New York, 2016, 652 pp. | DOI

[4] Deng X., Watson C., “Lubricant Inertia in Water Lubricated Bearings”, Proceedings of the 29th Symposium on Fluid Machinery, 2017, 1–8 | DOI

[5] Javorova J.G., “On the method of averaged inertia at hydrodynamic lubrication with fluid inertia effects: a review”, Vestnik Severo-Kazakhstanskogo Universiteta im. M. Kozybaeva. Ser. Tekhnicheskie nauki, 3:36 (2017), 5–10

[6] Singh U.P., “Effects of surface roughness and supply inertia on steady performance of hydro static thrust bearings lubricated with non-newtonian fluids”, Journal of Mechanical Engineering, 71:2 (2021), 317–328 | DOI

[7] Ghosh K.C., Mazumder S.K., “Steady State Performance Characteristics of Isoviscous Finite Flexible Oil Journal Bearings Including Fluid Inertia Effect”, International Journal of Engineering Research Technology, 6:7 (2017), 318–326 | DOI

[8] Tieshu F., Sina H., “The effect of lubricant inertia on fluid cavitation for high-speed squeeze film dampers”, Journal of Vibroengineering, 19:8 (2017), 6122–6134 | DOI

[9] Sina H., Kamran B., “A Study of Lubricant Inertia Effects for Squeeze Film Dampers Incorporated into High-Speed Turbomachinery”, Lubricants, 5:4 (2017), 1–29 | DOI

[10] Singh U.P., Sinha P., “Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235:2 (2020), 386395 | DOI

[11] Walicka A., Jurczak P., “Influence of total inertia effects in a thrust curvilinear bearing lubricated with Newtonian Lubricants”, Int. J. of Applied Mechanics and Engineering, 22:4 (2017), 1045–1058 | DOI

[12] Borisevich V.D., Potanin E.P., “Ispolzovanie preobrazovaniya Dorodnitsyna dlya analiza teplo- i massoperenosa vo vraschayuschikhsya potokakh”, Prikladnaya matematika i mekhanika, 85:6 (2021), 758–771 | DOI

[13] Akhverdiev K.S., Bolgova E.A., “Gidrodinamicheskii raschet klinovidnoi sistemy «polzun-napravlyayuschaya», rabotayuschei na szhimaemom smazochnom materiale v usloviyakh nalichiya rasplava na poverkhnosti napravlyayuschei”, Omskii nauchnyi vestnik, 2:176 (2021), 10–14 | DOI

[14] Mukutadze M.A., Khasyanova D.U., “Gidrodinamicheskaya model klinovidnoi opory skolzheniya s legkoplavkim metallicheskim pokrytiem”, Problemy mashinostroeniya i nadezhnosti mashin, 2020, no. 4, 51–58 | DOI