Investigation of dynamics of a region with high-order orbital resonances
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 58-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the regions of orbital resonances 1:5, 1:7, 1:9, 1:10, and 1:11 at the Earth's rotation speed are considered. The motion of objects is simulated using the improved software package “Numerical Model of the Motion of AES Systems” on the SKIF Cyberia cluster of the National Research Tomsk State University. The modeling is performed with account for the effect of geopotential harmonics up to a degree and order of 10, as well as the attraction of the Moon and Sun. As a result, the maps of the distribution of orbital resonance multiplets and the MEGNO maps have been obtained for each region. All the regions are examined for the presence of real objects. The obtained data show that the chaotization of motion in the regions 1:5, 1:7, and 1:9 occurs due to the superposition of other different resonances on the second component of the orbital resonance. In the regions 1:10 and 1:11, the orbital resonance does not affect the chaotization of motion. All real objects located in the regions under consideration are not exposed to the effect of orbital resonances.
Keywords: orbital resonances, dynamics, chaotization of motion.
Mots-clés : MEGNO-map
@article{VTGU_2022_79_a4,
     author = {E. V. Blinkova and T. V. Bordovitsyna},
     title = {Investigation of dynamics of a region with high-order orbital resonances},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {58--68},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a4/}
}
TY  - JOUR
AU  - E. V. Blinkova
AU  - T. V. Bordovitsyna
TI  - Investigation of dynamics of a region with high-order orbital resonances
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 58
EP  - 68
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a4/
LA  - ru
ID  - VTGU_2022_79_a4
ER  - 
%0 Journal Article
%A E. V. Blinkova
%A T. V. Bordovitsyna
%T Investigation of dynamics of a region with high-order orbital resonances
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 58-68
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a4/
%G ru
%F VTGU_2022_79_a4
E. V. Blinkova; T. V. Bordovitsyna. Investigation of dynamics of a region with high-order orbital resonances. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 58-68. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a4/

[1] Tomilova I.V., Blinkova E.V., Bordovitsyna T.V., “Osobennosti dinamiki ob'ektov, dvizhuschikhsya v okrestnosti rezonansa 1:3 s vrascheniem Zemli”, Astronomicheskii vestnik, 53:5 (2019), 323–338

[2] Tomilova I.V., Blinkova E.V., Bordovitsyna T.V., “Osobennosti dinamiki ob'ektov, dvizhuschikhsya v zonakh orbitalnykh rezonansov 1:4, 1:6 i 1:8 s vrascheniem Zemli”, Astronomicheskii vestnik, 55:5 (2021), 427–443

[3] Kuznetsov E.D., Zakharova P.E., Glamazda D.V., Shagabutdinov A.I., Kudryavtsev S.O., “O vliyanii svetovogo davleniya na orbitalnuyu evolyutsiyu ob'ektov, dvizhuschikhsya v okrestnosti rezonansov nizkikh poryadkov”, Astronomicheskii vestnik, 46:6 (2012), 480–488

[4] Celletti A., Gales C., “Dynamical investigation of minor resonances for space debris”, Celestial Mechanics and Dynamical Astronomy, 123 (2015), 203–222

[5] Celletti A., Gales C., “Dynamics of resonances and equilibria of Low Earth Objects”, SIAM Journal on Applied Dynamical Systems, 17 (2018), 203–235

[6] Celletti A., Gales C., Lhotka C., “Resonances in the Earth's space environment”, Commun. Nonlinear Sci. Numer. Simulat., 84 (2020), 105–185

[7] Cincotta P.M., Girdano C.M., Simo C., “Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits”, Physica D, 182 (2003), 151–178

[8] Katalog elementov NORAD, https://celestrak.org/NORAD/elements/

[9] Aleksandrova A.G., Bordovitsyna T.V., Chuvashov I.N., “Chislennoe modelirovanie v zadachakh dinamiki okolozemnykh ob'ektov”, Izvestiya vuzov. Fizika, 60 (2017), 69–76

[10] Avdyushev V.A., “Integrator Gaussa-Everkharta”, Vychislitelnye tekhnologii, 15:4 (2010), 31–47

[11] Allan R.R., “Resonance effects due to the longitude dependence of the gravitational field of a rotating primary”, Planetary and Space Science, 15 (1967), 53–76

[12] Allan R.R., “Satellites resonance with the longitude dependent gravity. II. Effects involving the eccentricity”, Planetary and Space Science, 15 (1967), 1829–1845

[13] Lane M., Hoots F., Project Space Track Report No2, Aerospace Defense Command., 1979

[14] Aleksandrova A.G., Blinkova E.V., Bordovitsyna T.V., Popandopulo N.A., Tomilova I.V., “Vekovye rezonansy v dinamike ob'ektov, dvizhuschikhsya v oblastyakh LEO-MEO okolozemnogo orbitalnogo prostranstva”, Astronomicheskii vestnik, 55:3 (2021), 272–287