Mots-clés : Poisson point process
@article{VTGU_2022_79_a3,
author = {I. M. Khamdamov and Z. S. Chay and L. D. Sharipova},
title = {The limit distribution of the perimeter of a convex hull generated by a {Poisson} point process in a convex polygon},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {44--57},
year = {2022},
number = {79},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a3/}
}
TY - JOUR AU - I. M. Khamdamov AU - Z. S. Chay AU - L. D. Sharipova TI - The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 44 EP - 57 IS - 79 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a3/ LA - ru ID - VTGU_2022_79_a3 ER -
%0 Journal Article %A I. M. Khamdamov %A Z. S. Chay %A L. D. Sharipova %T The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 44-57 %N 79 %U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a3/ %G ru %F VTGU_2022_79_a3
I. M. Khamdamov; Z. S. Chay; L. D. Sharipova. The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 44-57. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a3/
[1] Nagaev A.V., Khamdamov I.M., “O roli ekstremalnykh slagaemykh v summe sluchainykh ve lichin”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 575–583
[2] Carnal H., “Die konvexe Hulle von n rotations symmetrisch verteilte n Punkten”, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 15 (1970), 168–176
[3] Efron B., “The convex hull of a random set of points”, Biometrika, 52 (1965), 331–343
[4] Schneider R., Random approximation of convex sets, Preprint Mathematical Institute, Albert-Ludwigs University, Freiburg im Breisgau, 1987, 180 pp.
[5] Groeneboom P., “Limit theorems for convex hulls”, Probab. Theory Related Fields, 79 (1988), 327–368
[6] Formanov Sh.K., Khamdamov I.M., “On joint probability distribution of the number of vertices and area of the convex hulls generated by a Poisson point process”, Statistics and Probability Letters, 169 (2021), 108966, 7 pp.
[7] Khamdamov I.M., “Predelnoe raspredelenie perimetra vypukloi obolochki, porozhdennoi Puassonovskim tochechnym protsessom v konuse”, Byulleten Instituta matematiki (AN RUz), 4:2 (2021), 95–98
[8] Khamdamov I.M., Chay Z.S., “Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon”, Journal of Siberian Federal University. Mathematics Physics, 14:2 (2021), 232–243
[9] Nagaev A.V., “Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain”, Ann. Inst. Statist. Math., 47 (1995), 21–29
[10] Petrov V.V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp.