Numerical simulation of air quality over a Tomsk city in light wind
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 25-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model and a numerical method for calculating meteorological parameters and quantities characterizing the quality of atmospheric air in the city, obtained using mesoscale models of numerical weather forecasting and impurity transport, are presented. The results of numerical calculations were compared with the data of observations performed with the instruments of the Central Collective Use Center “Atmosfera” of the Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences. The conducted studies have shown that the most unfavorable meteorological conditions leading to the accumulation of impurities near the earth's surface are observed in the morning and evening hours — this is a weak wind of variable direction and stable or neutral stratification of the surface air layer.
Keywords: mathematical modeling, air quality, semi-implicit difference schemes, parallel computing, weak wind
Mots-clés : stable stratification.
@article{VTGU_2022_79_a2,
     author = {A. V. Starchenko and E. A. Shelmina and L. I. Kizhner and S. L. Odintsov},
     title = {Numerical simulation of air quality over a {Tomsk} city in light wind},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {25--43},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a2/}
}
TY  - JOUR
AU  - A. V. Starchenko
AU  - E. A. Shelmina
AU  - L. I. Kizhner
AU  - S. L. Odintsov
TI  - Numerical simulation of air quality over a Tomsk city in light wind
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 25
EP  - 43
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a2/
LA  - ru
ID  - VTGU_2022_79_a2
ER  - 
%0 Journal Article
%A A. V. Starchenko
%A E. A. Shelmina
%A L. I. Kizhner
%A S. L. Odintsov
%T Numerical simulation of air quality over a Tomsk city in light wind
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 25-43
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a2/
%G ru
%F VTGU_2022_79_a2
A. V. Starchenko; E. A. Shelmina; L. I. Kizhner; S. L. Odintsov. Numerical simulation of air quality over a Tomsk city in light wind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 25-43. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a2/

[1] Berlyand M.E., Prognoz i regulirovanie zagryazneniya atmosfery, Gidrometeoizdat, L., 1991, 267 pp.

[2] Bezuglaya E.Yu., Rastorgueva G.P., Smirnova I.V., Chem dyshit promyshlennyi gorod, Gidrometeoizdat, L., 1991, 251 pp.

[3] Sokhi R.S., Baklanov A.A., Shlunzen K.H., Mesoscale modelling for meteorological and air pollution application, Anthem Press, 2018, 376 pp.

[4] Baklanov A., Korsholm U., Nuterman R., Mahura A., Nielsen K.P., Sass B.H., Rasmussen A., Zakey A., Kaas E., Kurganskiy A., Sørensen B., Gonzalez-Aparicio I., “Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)”, Geosci. Model Dev., 10 (2017), 2971–2999 | DOI

[5] Srivastava I., Yarragunta S., Kumar R., Mitra D., “Distribution of surface carbon monoxide over the Indian subcontinent: Investigation of source contributions using WRF-Chem”, Atmospheric Environment, 243 (2020), 117838 | DOI

[6] Nakhaev M.I., Berezin E.V., Shalygina I.Yu., Kuznetsova I.N. i dr., “Eksperimentalnye raschety kontsentratsii RM10 I SO kompleksom modelei CHIMERE i COSMO-Ru7”, Optika atmosfery i okeana, 25:6 (2015), 485–492

[7] Shalygina I.Yu., Nakhaev M.I., Kuznetsova I.N., Berezin E.V., Konovalov I.B., Blinov D.V., Kirsanov A.A., “Sravnenie rasschitannykh s pomoschyu khimicheskikh transportnykh modelei prizemnykh kontsentratsii zagryaznyayuschikh veschestv s dannymi izmerenii v Moskovskom regione”, Optika atmosfery i okeana, 30:01 (2017), 53–59 | DOI

[8] Starchenko A.V., Bart A.A., Kizhner L.I., Danilkin E.A., “Mezomasshtabnaya meteorologi cheskaya model TSUNM3 dlya issledovaniya i prognozirovaniya sostoyaniya meteoparametrov prizemnogo sloya atmosfery nad krupnym naselennym punktom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 66, 3555 pp. | DOI

[9] Starchenko A., Shelmina E., Kizhner L., “Numerical Simulation of Meteorological Conditions and Air Quality above Tomsk, West Siberia”, Atmosphere, 11:11 (2020), 1148 | DOI

[10] Marchuk G.I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp.

[11] Penenko V.V., Aloyan A.E., Modeli i metody dlya zadach okhrany okruzhayuschei sredy, Nauka, Sib. otd-nie, Novosibirsk, 1985, 256 pp.

[12] Wesley M.L., “Parameterisation of surface resistances to gaseous dry deposition in regional-scale numerical models”, Atmospheric Environment, 23:6 (1989), 1293–1304 | DOI

[13] Ob ekologicheskoi situatsii v Tomskoi oblasti v 2020 godu : gosudarstvennyi doklad, Departament prirodnykh resursov i okhrany okruzhayuschei sredy Tomskoi oblasti, Tomsk, 2021, 134 pp.

[14] Bart A.A., Starchenko A.V., “Modelling of urban air pollution by anthropogenic and biogenic source emissions”, Proc. SPIE, 9292 (2014), 929248-1–929248-8

[15] Guennther A.B., Jiang X., Heald C.L., Sakulyanontvittaya T., Duhl T., Emmons L.K., Wang X., “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions”, Geosci. Model Dev., 5 (2010), 1471–1492

[16] Hurley P., TAPM V4. Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper No25, 2008, 59 pp.

[17] Stockwell W.R., Goliff W.S., “Comment on «Simulation of a reacting pollutant puff using an adaptive grid algorithm» by R.K. Srivastava et al.”, j. Geophys. Res., 107 (2002), 46434650

[18] Tolstykh M.A., Fadeev R.Yu., Shashkin V.V., Goiman G.S., Zaripov R.B., Kiktev D.B., Makhnorylova S.V., Mizyak V.G., Rogutov V.S., “Mnogomasshtabnaya globalnaya model atmosfery PLAV: rezultaty srednesrochnykh prognozov pogody”, Meteorologiya i gidrologiya, 2018, no. 11, 90–99

[19] Van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14 (1974), 361–370

[20] Shen J., Zhao Q., “Comparison of some atmospheric chemical modelling schemes”, Journal of Environmental Sciences, 9:2 (1997), 183–201

[21] Starchenko A.V., Bertsun V.N., Metody parallelnykh vychislenii, Izd-vo Tom. un-ta, Tomsk, 2013, 223 pp.

[22] Rife D.L., Davis C.A., Liu Y., Warner T.T., “Predictability of Low-Level Winds by Mesoscale Meteorological Models”, Monthly Weather Review, 132 (2004), 2553–2569 | DOI

[23] Olauson J., Samuelsson J., Bergstrom H., Bergkvist M., “Using the MIUU Model for Prediction of Mean Wind Speed At Low Height”, Wind engineering, 39:5 (2015), 507–518 | DOI

[24] Elektronnyi fond pravovykh i normativno-tekhnicheskikh dokumentov. Rukovodyaschii dokument. Dokumenty o sostoyanii zagryazneniya atmosfery v gorodakh dlya informirovaniya gosudarstvennykh organov, obschestvennosti i naseleniya, data vvedeniya 01.02.2006 (data obrascheniya 16.02.2022) https://docs.cntd.ru/document/1200067118