Mots-clés : solution algorithm.
@article{VTGU_2022_79_a1,
author = {L. I. Mammadova and I. M. Nabiev},
title = {Uniqueness of recovery of the {Sturm-Liouville} operator with a spectral parameter quadratically entering the boundary condition},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {14--24},
year = {2022},
number = {79},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a1/}
}
TY - JOUR AU - L. I. Mammadova AU - I. M. Nabiev TI - Uniqueness of recovery of the Sturm-Liouville operator with a spectral parameter quadratically entering the boundary condition JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 14 EP - 24 IS - 79 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a1/ LA - ru ID - VTGU_2022_79_a1 ER -
%0 Journal Article %A L. I. Mammadova %A I. M. Nabiev %T Uniqueness of recovery of the Sturm-Liouville operator with a spectral parameter quadratically entering the boundary condition %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 14-24 %N 79 %U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a1/ %G ru %F VTGU_2022_79_a1
L. I. Mammadova; I. M. Nabiev. Uniqueness of recovery of the Sturm-Liouville operator with a spectral parameter quadratically entering the boundary condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 14-24. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a1/
[1] Kollatts L., Zadachi na sobstvennye znacheniya : (s tekhnicheskimi prilozheniyami), Nauka, M., 1968, 504 pp.
[2] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Izd-vo Mosk. gos. un-ta, M., 1999, 799 pp.
[3] Akhtyamov A.M., Teoriya identifikatsii kraevykh uslovii i ee prilozheniya, Fizmatlit, M., 2009, 272 pp.
[4] Panakhov E.S., Koyunbakan H., Ic U., “Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition”, Inverse Probl. Sci. and Eng., 18:1 (2010), 173–180 | DOI
[5] Etkin A.E., Etkina G.P., “O edinstvennosti resheniya obratnoi zadachi Shturma-Liuvillya so spektralnym parametrom, ratsionalno vkhodyaschim v granichnoe uslovie”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika, 4:3 (2011), 158170
[6] Guldu Y., Amirov R.Kh., Topsakal N., “On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions”, Ukrainskii matematicheskii zhurnal, 64:12 (2012), 1610–1629
[7] Moller M., Pivovarchik V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications, Birkhauser, Cham, 2015, 412 pp. | DOI
[8] Guliyev N.J., “Schrodinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter”, j. Math. Phys., 60:6 (2019), 063501, 1–23 | DOI
[9] Guliyev N.J., “On two-spectra inverse problems”, Proc. American Math. Soc., 148:10 (2020), 4491–4502 | DOI
[10] Guliyev N.J., “Essentially isospectral transformations and their applications”, Annali di Matematica Pura ed Applicata, 199:4 (2020), 1621–1648 | DOI
[11] Ala V., Mamedov Kh.R., “On a discontinuous Sturm-Liouville problem with eigenvalue parameter in the boundary conditions”, Dynamic Systems and Applications, 29 (2020), 182–191 http://www.dynamicpublishers.com/DSA/dsa2020pdf/11-DSA-20-A-11.pdf
[12] Yang Ch.-F., Bondarenko N.P., Xu X-Ch., “An inverse problem for the Sturm Liouville pencil with arbitrary entire functions in the boundary condition”, Inverse Problems and Imaging, 14:1 (2020), 153–169 | DOI
[13] Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Obratnaya zadacha dlya puchka operatorov s neraspadayuschimisya kraevymi usloviyami”, Doklady RAN, 425:1 (2009), 31–33
[14] Yurko V.A., “Inverse problems for nonselfadjoint quasi-periodic differential pencils”, Anal. Math. Phys., 2 (2012), 215–230 | DOI
[15] Freiling G., Yurko V., “Recovering nonselfadjoint differential pencils with nonseparated boundary conditions”, Applicable Anal., 94:8 (2015), 1649–1661 | DOI
[16] Ibadzadeh Ch.G., Mammadova L.I., Nabiev I.M., “Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition”, Azerbaijan Journal of Mathematics, 9:1 (2019), 171–189 http://azjm.org/volumes/0901/pdf/1.pdf
[17] Mammadova L.I., Nabiev I.M., Rzayeva Ch.H., “Uniqueness of the solution of the inverse problem for differential operator with semiseparated boundary conditions”, Baku Mathematical Journal, 1:1 (2022), 47–52 | DOI
[18] Nabiev I.M., “Reconstruction of the differential operator with spectral parameter in the boundary condition”, Mediterr. Journal of Mathematics, 19:3 (2022), 124, 1–14 | DOI
[19] Yurko V.A., “Inverse spectral problems for differential operators with non-separated boundary conditions”, Journal of Inverse and Ill-posed Problems, 28:4 (2020), 567–616 | DOI
[20] Marchenko V.A., Operatory Shturma-Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977, 332 pp.
[21] Nabiev I.M., “Determination of the diffusion operator on an interval”, Colloquium Mathematicum, 134:2 (2014), 165–178 | DOI
[22] Yurko V.A., “Ob obratnoi periodicheskoi zadache dlya tsentralno-simmetrichnykh potentsialov”, Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 16:1 (2016), 68–75 | DOI
[23] Guseinov I.M., Nabiev I.M., “Reshenie odnogo klassa obratnykh kraevykh zadach Shturma-Liuvillya”, Matematicheskii sbornik, 186:5 (1995), 35–48 | DOI
[24] Makin A.S., “Obratnaya zadacha dlya operatora Shturma-Liuvillya s regulyarnymi kraevymi usloviyami”, Doklady RAN, 408:3 (2006), 305–308
[25] Levin B.Ya., Tselye funktsii, Izd-vo Mosk. gos. un-ta, M., 1971, 124 pp.
[26] Mammadova L.I., Nabiev I.M., “Spektralnye svoistva operatora Shturma-Liuvillya so spektralnym parametrom, kvadratichno vkhodyaschim v granichnoe uslovie”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 237–248 | DOI