Comparison of advanced turbulence models for the Taylor-Couette flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 125-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Swirling flows of fluids and gases are an integral part of many complex flows which are widely encountered in nature and technology. The working process of numerous technical devices (cyclones, vortex combustion chambers, air separators, gas and steam turbines, electric machines and generators, etc.) is generally determined by the laws of hydrodynamics and heat exchange of rotating flows. The problem of deriving general laws for a turbulent flow in the field of centrifugal forces provokes considerable scientific interest since it belongs to an underdeveloped field of hydromechanics. Therefore, mathematical modeling of swirling turbulent flows is still an urgent problem. In this paper, a comparative analysis of the advanced turbulence models for the Taylor-Couette flow is carried out. For this purpose, the linear turbulence models (SARC and SST-RC), the Reynolds stress method SSG/LRR-RSM-w2012, and a two-fluid model are used. The results obtained using these models are compared with each other and with known experimental data and direct numerical simulation results. The numerical results calculated with the use of turbulence models for the Taylor-Couette flow confirm that almost all the models adequately describe velocity profiles. However, they yield different turbulent viscosity values and, as a result, different friction coefficients. A comparison of the numerical results shows that the friction coefficient calculated using a two-fluid turbulence model is the closest to that obtained experimentally.
Keywords: rotating flow, Reynolds-averaged Navier-Stokes equations, SSG/LRR-RSM-w2012 model, SARC model, SST model, two-fluid model.
@article{VTGU_2022_78_a9,
     author = {Z. M. Malikov and F. Kh. Nazarov and M. E. Madaliev},
     title = {Comparison of advanced turbulence models for the {Taylor-Couette} flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {125--142},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/}
}
TY  - JOUR
AU  - Z. M. Malikov
AU  - F. Kh. Nazarov
AU  - M. E. Madaliev
TI  - Comparison of advanced turbulence models for the Taylor-Couette flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 125
EP  - 142
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/
LA  - ru
ID  - VTGU_2022_78_a9
ER  - 
%0 Journal Article
%A Z. M. Malikov
%A F. Kh. Nazarov
%A M. E. Madaliev
%T Comparison of advanced turbulence models for the Taylor-Couette flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 125-142
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/
%G ru
%F VTGU_2022_78_a9
Z. M. Malikov; F. Kh. Nazarov; M. E. Madaliev. Comparison of advanced turbulence models for the Taylor-Couette flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 125-142. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/

[1] Versteegh T.A., Nieuwstadt F.T.M., “Turbulent Budgets of Natural Convection in an Infinite, Differentially Heated, Vertical Channel”, International Journal of Heat and Fluid Flow, 19:2 (1998), 135–149 | DOI

[2] Boudjemadi R., Maupu V., Laurence D., Le Quere P., “Direct Numerical Simulation of Natural Convection in a Vertical Channel: a Tool for Second-Moment Closure Modelling”, Proc. Engineering Turbulence Modelling and Experiments, v. 3, Elsevier, Amsterdam, 1996, 39

[3] Peng S.H., Davidson L., “Large Eddy Simulation of Turbulent Buoyant Flow in a Confined Cavity”, International Journal of Heat and Fluid Flow, 22:3 (2001), 323–331 | DOI

[4] Cabot W., Moin P., “Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow”, Flow, Turbulence and Combustion, 63 (1999), 269–291 | DOI

[5] Spalart P.R., Shur M.L., “On the sensitization of turbulence models to rotational and curvature”, Aerospace Science and Technology, 1:5 (1997), 297–302

[6] Smirnov P., Menter F., “Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term”, Proceedings of the American Society of Mechanical Engineers Turbo Expo 2008: Power for Land, Sea and Air (Germany), 2008, 10

[7] Spalart P.R., Allmaras S.R., “A one-equation turbulence model for aerodynamic flow”, American Institute of Aeronautics and Astronautics Paper, 12:1 (1992), 439–478

[8] Menter F.R., Zonal two-equation $k$-$\omega$ turbulence models for aerodynamic flows, American Institute of Aeronautics and Astronautics Paper No 2906, 1993

[9] Sentyabov A.V., Gavrilov A.A., Dekterev A.A., “Study of turbulence models for calculating swirling flows”, Teplofizika i aeromekhanika - Thermophysics and Aeromechanics, 18:1 (2011), 81–94

[10] Spalding D.B., “Chemical reaction in turbulent fluids”, Journal physicochemical hydrodynamics, 4 (1983), 323–336 | DOI

[11] Spalding D.B., “A turbulence model for buoyant and combusting flows”, 4th Int. Conf. on Numerical methods in Thermal Problems (Swansea, 15-18 July 1984)

[12] Malikov Z., “Mathematical Model of Turbulence Based on the Dynamics of Two Fluids”, Applied Mathematic Modeling, 82:202 (2020), 409–436 | DOI

[13] Malikov Z.M., Madaliev M.E., “Numerical Simulation of Two-Phase Flow in a Centrifugal Separator”, Fluid Dynamics, 55:8 (2020), 1012–1028 | DOI

[14] Malikov Z.M., Madaliev M.E., “Numerical study of a swirling turbulent flow through a channel with an abrubt expansion”, Tomsk State University Journal of Mathematics and Mechanics, 2021, no. 72, 93–101 | DOI

[15] Malikov Z.M., Madaliev M.E., “New two-fluid turbulence model-based numerical simulation of flow in a flat suddenly expanding channel”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2021, no. 4 (97), 24–39 | DOI

[16] Rayleigh L., “On the dynamics of revolving fluids”, Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, 1916, no. 93 (648), 148–154

[17] Taylor G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Philosophical Transactions of the Royal Society, 233 (1923), 298–343 | DOI

[18] Taylor G.I., “Fluid friction between rotating cylinders I - Torque measurements”, Proceedings of the Royal Society of London, 157 (1933), 546–564 | DOI

[19] Von Lavante E., Yao J., “Numerical investigation of turbulent swirling flows in axisymmetric internal flow configurations”, Flow Measurement and Instrumentation, 25 (2012), 63–68

[20] Panahandehgar S., CFD Study of Taylor-Like Vortices in Swirling Flows, Dissertations and Theses, 2019, 452 pp. https://commons.erau.edu/edt/452

[21] Mulligan S., De Cesare G., Casserly J., Sherlock R., Understanding turbulent free surface vortex flows using a Taylor-Couette flow analogy, Scientific Reports, 2018 | DOI

[22] Tuckerman L.S., “Taylor vortices versus Taylor columns”, j. Fluid Mech., 750 (2014), 1–4

[23] Bai Y., Study of viscoelastic instabily in Taylor-Couette system as an analog of the magnetorotational instability, PhD dissertation, Universite du Havre, 2015

[24] Mahloul M., Mahamdia A., Kristiawan M., “The spherical Taylor-Couette flow”, European J. Mech B/Fluids, 59 (2016), 1–6 | DOI

[25] Burin M.J., Czarnocki C.J., “Subcritical transition and spiral turbulence in circular Couette flow”, Journal of Fluid Mechanics, 709 (2012), 106–122

[26] Shvab A.V., Popp M.Yu., “Modeling of the laminar swirling flow in a vortex chamber”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2 (28), 90–97

[27] Turubaev R.R., Shvab A.V., “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98 | DOI

[28] Robertson J.M., “On turbulent plane Couette flow”, Proc. 6th Midwestern Conf. Fluid Mech. (Univ. Texas, Austin, 1959), 169–182

[29] El Telbany M.M., Reynolds A.J., “The structure of turbulent plane Couette flow”, Journal of Fluids Engineering, 104 (1982), 367–372 | DOI

[30] Ostilla-Monico R., Huisman S.G., Jannink T.J.G., Van Gils D.P.M., Verzicco R., Grossmann S., Sun C., Lohse D., “Optimal Taylor_Couette flow: radius ratio dependence”, Journal of Fluid Mechanics, 747 (2014), 1–29 | DOI

[31] Ustimenko B.P., Protsessy turbulentnogo perenosa vo vraschayuschikhsya techeniyakh, Nauka, Alma-Ata, 1977, 228 pp.

[32] Bjorclund I.S., “Heat transfer between concentric rotating cylinders”, Journal of Heat Transfer, 81 (1959), 175–186

[33] Greidanus A.J., Delfos R., Tokgoz S., Westerweel J., “Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation”, Experiments in Fluids, 56 (2015), 107 | DOI

[34] Ravelet F., Delfos R., Westerweel J., “Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor-Couette flow”, Physics of fluids, 22 (2010), 055103 | DOI