@article{VTGU_2022_78_a9,
author = {Z. M. Malikov and F. Kh. Nazarov and M. E. Madaliev},
title = {Comparison of advanced turbulence models for the {Taylor-Couette} flow},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {125--142},
year = {2022},
number = {78},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/}
}
TY - JOUR AU - Z. M. Malikov AU - F. Kh. Nazarov AU - M. E. Madaliev TI - Comparison of advanced turbulence models for the Taylor-Couette flow JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 125 EP - 142 IS - 78 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/ LA - ru ID - VTGU_2022_78_a9 ER -
%0 Journal Article %A Z. M. Malikov %A F. Kh. Nazarov %A M. E. Madaliev %T Comparison of advanced turbulence models for the Taylor-Couette flow %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 125-142 %N 78 %U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/ %G ru %F VTGU_2022_78_a9
Z. M. Malikov; F. Kh. Nazarov; M. E. Madaliev. Comparison of advanced turbulence models for the Taylor-Couette flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 125-142. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a9/
[1] Versteegh T.A., Nieuwstadt F.T.M., “Turbulent Budgets of Natural Convection in an Infinite, Differentially Heated, Vertical Channel”, International Journal of Heat and Fluid Flow, 19:2 (1998), 135–149 | DOI
[2] Boudjemadi R., Maupu V., Laurence D., Le Quere P., “Direct Numerical Simulation of Natural Convection in a Vertical Channel: a Tool for Second-Moment Closure Modelling”, Proc. Engineering Turbulence Modelling and Experiments, v. 3, Elsevier, Amsterdam, 1996, 39
[3] Peng S.H., Davidson L., “Large Eddy Simulation of Turbulent Buoyant Flow in a Confined Cavity”, International Journal of Heat and Fluid Flow, 22:3 (2001), 323–331 | DOI
[4] Cabot W., Moin P., “Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow”, Flow, Turbulence and Combustion, 63 (1999), 269–291 | DOI
[5] Spalart P.R., Shur M.L., “On the sensitization of turbulence models to rotational and curvature”, Aerospace Science and Technology, 1:5 (1997), 297–302
[6] Smirnov P., Menter F., “Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term”, Proceedings of the American Society of Mechanical Engineers Turbo Expo 2008: Power for Land, Sea and Air (Germany), 2008, 10
[7] Spalart P.R., Allmaras S.R., “A one-equation turbulence model for aerodynamic flow”, American Institute of Aeronautics and Astronautics Paper, 12:1 (1992), 439–478
[8] Menter F.R., Zonal two-equation $k$-$\omega$ turbulence models for aerodynamic flows, American Institute of Aeronautics and Astronautics Paper No 2906, 1993
[9] Sentyabov A.V., Gavrilov A.A., Dekterev A.A., “Study of turbulence models for calculating swirling flows”, Teplofizika i aeromekhanika - Thermophysics and Aeromechanics, 18:1 (2011), 81–94
[10] Spalding D.B., “Chemical reaction in turbulent fluids”, Journal physicochemical hydrodynamics, 4 (1983), 323–336 | DOI
[11] Spalding D.B., “A turbulence model for buoyant and combusting flows”, 4th Int. Conf. on Numerical methods in Thermal Problems (Swansea, 15-18 July 1984)
[12] Malikov Z., “Mathematical Model of Turbulence Based on the Dynamics of Two Fluids”, Applied Mathematic Modeling, 82:202 (2020), 409–436 | DOI
[13] Malikov Z.M., Madaliev M.E., “Numerical Simulation of Two-Phase Flow in a Centrifugal Separator”, Fluid Dynamics, 55:8 (2020), 1012–1028 | DOI
[14] Malikov Z.M., Madaliev M.E., “Numerical study of a swirling turbulent flow through a channel with an abrubt expansion”, Tomsk State University Journal of Mathematics and Mechanics, 2021, no. 72, 93–101 | DOI
[15] Malikov Z.M., Madaliev M.E., “New two-fluid turbulence model-based numerical simulation of flow in a flat suddenly expanding channel”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2021, no. 4 (97), 24–39 | DOI
[16] Rayleigh L., “On the dynamics of revolving fluids”, Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, 1916, no. 93 (648), 148–154
[17] Taylor G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Philosophical Transactions of the Royal Society, 233 (1923), 298–343 | DOI
[18] Taylor G.I., “Fluid friction between rotating cylinders I - Torque measurements”, Proceedings of the Royal Society of London, 157 (1933), 546–564 | DOI
[19] Von Lavante E., Yao J., “Numerical investigation of turbulent swirling flows in axisymmetric internal flow configurations”, Flow Measurement and Instrumentation, 25 (2012), 63–68
[20] Panahandehgar S., CFD Study of Taylor-Like Vortices in Swirling Flows, Dissertations and Theses, 2019, 452 pp. https://commons.erau.edu/edt/452
[21] Mulligan S., De Cesare G., Casserly J., Sherlock R., Understanding turbulent free surface vortex flows using a Taylor-Couette flow analogy, Scientific Reports, 2018 | DOI
[22] Tuckerman L.S., “Taylor vortices versus Taylor columns”, j. Fluid Mech., 750 (2014), 1–4
[23] Bai Y., Study of viscoelastic instabily in Taylor-Couette system as an analog of the magnetorotational instability, PhD dissertation, Universite du Havre, 2015
[24] Mahloul M., Mahamdia A., Kristiawan M., “The spherical Taylor-Couette flow”, European J. Mech B/Fluids, 59 (2016), 1–6 | DOI
[25] Burin M.J., Czarnocki C.J., “Subcritical transition and spiral turbulence in circular Couette flow”, Journal of Fluid Mechanics, 709 (2012), 106–122
[26] Shvab A.V., Popp M.Yu., “Modeling of the laminar swirling flow in a vortex chamber”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2 (28), 90–97
[27] Turubaev R.R., Shvab A.V., “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98 | DOI
[28] Robertson J.M., “On turbulent plane Couette flow”, Proc. 6th Midwestern Conf. Fluid Mech. (Univ. Texas, Austin, 1959), 169–182
[29] El Telbany M.M., Reynolds A.J., “The structure of turbulent plane Couette flow”, Journal of Fluids Engineering, 104 (1982), 367–372 | DOI
[30] Ostilla-Monico R., Huisman S.G., Jannink T.J.G., Van Gils D.P.M., Verzicco R., Grossmann S., Sun C., Lohse D., “Optimal Taylor_Couette flow: radius ratio dependence”, Journal of Fluid Mechanics, 747 (2014), 1–29 | DOI
[31] Ustimenko B.P., Protsessy turbulentnogo perenosa vo vraschayuschikhsya techeniyakh, Nauka, Alma-Ata, 1977, 228 pp.
[32] Bjorclund I.S., “Heat transfer between concentric rotating cylinders”, Journal of Heat Transfer, 81 (1959), 175–186
[33] Greidanus A.J., Delfos R., Tokgoz S., Westerweel J., “Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation”, Experiments in Fluids, 56 (2015), 107 | DOI
[34] Ravelet F., Delfos R., Westerweel J., “Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor-Couette flow”, Physics of fluids, 22 (2010), 055103 | DOI