Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 112-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a theoretical study of quick methods for determining the aerodynamic characteristics of fixed-wing unmanned aerial vehicles (UAVs). The purpose of the research is to create tools for aircraft shape optimization problems. The developed analytical techniques allow one to determine aerodynamic lift and drag coefficients as well as the efficiency characteristics based on the aircraft general characteristics. Other properties that can be derived are the wing shape parameters, the take-off mass, the structural mass, and the required characteristics of the propulsion and power supply system according to the specified flight performance characteristics. The use of these techniques for discrete points with aerodynamic characteristics obtained numerically or experimentally allows one to extrapolate the results to the entire range of operating angles of attack. As a result, the stages of conceptual and preliminary design of UAVs can be passed in a shorter span of time. Two UAVs have been designed in Tomsk State University with the use of the proposed techniques. The first is the preliminary designed UAV Prototype-2E; the second is the Prototype-2T UAV, which has been fully designed and then manufactured. The data calculated with these techniques on a SKIF Cyberia supercomputer in Tomsk State University are compared with the results of numerical simulations implemented in OpenFOAM and ANSYS Fluent. Good agreement of the results is revealed.
Keywords: unmanned aerial vehicle, UAV design, preliminary design, aerodynamic efficiency.
@article{VTGU_2022_78_a8,
     author = {K. K. Ismailov},
     title = {Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {112--124},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a8/}
}
TY  - JOUR
AU  - K. K. Ismailov
TI  - Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 112
EP  - 124
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a8/
LA  - ru
ID  - VTGU_2022_78_a8
ER  - 
%0 Journal Article
%A K. K. Ismailov
%T Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 112-124
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a8/
%G ru
%F VTGU_2022_78_a8
K. K. Ismailov. Determination of aerodynamic characterisitcs of fixed-wing unmanned aerial vehicle by analytical techniques. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 112-124. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a8/

[1] Fedorov L.P., Mikhailov Yu.S., “Opredelenie optimalnykh rezhimov kreiserskogo poleta vysotnogo bespilotnogo letatelnogo apparata”, Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2013, no. 2 (188), 72–76

[2] Eger S.M., Mishin V.F., Liseitsev N.K., Badyagin A.A., Rotin V.E., Sklyanskii F.I., Kondrashov N.A., Kiselev V.A., Fomin N.A., Proektirovanie samoletov, uchebnik dlya vuzov, Mashinostroenie, M., 1983, 616 pp.

[3] Mizes R., Teoriya poleta, per. s angl. A.N. Rubashova, Inostr. lit., M., 1949, 696 pp.

[4] Torenbik E., Proektirovanie dozvukovykh samoletov, per. s angl. E.P. Golubkov, Mashinostroenie, M., 1983, 648 pp.

[5] Peigin S.V., Orlov S.A., “Optimalnoe aerodinamicheskoe proektirovanie konfiguratsii «krylo-fyuzelyazh» shirokofyuzelyazhnogo dalnemagistralnogo samoleta”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 115124 | DOI

[6] Stepanov K.A., Timchenko S.V., “Aerodinamicheskoe proektirovanie izolirovannogo trekhmernogo kryla bespilotnogo letatelnogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 54, 118–130 | DOI

[7] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, M., 2012, 210 pp.

[8] Shlikhting G., Teoriya pogranichnogo sloya, per. s nem. G.A. Volpert s 5-go nem. izd., ispravlennyi po 6-mu (amer.) izd., ed. L.G. Loitsyanskogo, Nauka, Gl. red. fiz.-mat. lit., M., 1974, 711 pp.

[9] GOST 22833-77 Kharakteristiki samoleta geometricheskie. Terminy, opredeleniya i bukvennye oboznacheniya, Izd-vo standartov, M., 1987, 24 pp.

[10] Ismailov K.K., Kagenov A.M., Kostyushin K.V., Orlov S.A., “Razrabotka tsifrovoi modeli BPLA samoletnogo tipa”, 19-ya Mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika», tez. (23-27 noyabrya 2020 g., Moskva), PeRo, M., 2020, 59–60

[11] Wilcox D.C., Turbulence Modeling for CFD, DCW Industries, La Canada, CA, 1993, 460 pp.

[12] Menter F.R., Zonal two-equation $k$-$\omega$ turbulence model for aerodynamic flows, AIAA 93-2906, 1993 | DOI

[13] Kagenov A.M., Kostyushin K.V., Ismailov K.K., Kostyushina N.O., Orlov S.A., Prokhanov S.A., “The development of a cloud system for investigation of UAVs aerodynamic characteristics”, j. Phys.: Conf. Ser., 1488 (2020), 1–5 | DOI

[14] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, per. s angl., Energoatomizdat, M., 1984, 152 pp.