The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 99-111

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes an approximate analytical solution for the geometrically nonlinear bending of a thin elastic cantilever beam under a uniformly distributed gravity load. The solution is based on the linearized Euler-Bernoulli equation of mechanics of materials. Traditionally, such a linear approach is used for small (geometrically linear) deflections. The authors have modified the original equation with an arc-length preservation condition. The modified solution allows one to obtain bending shapes, deflection, and axial displacement in the range of loads corresponding to geometrically nonlinear bending of a beam (large deflections). An experimental study is conducted to verify the proposed solution. A thin steel band bent by gravity is used as a sample. Changes in the length of the bent sample part allow one to obtain various dimensionless load parameters. The deflections and axial displacements averaged on experimental statistics are determined. Bending shapes are obtained by the least square method of 5$^{th}$ order. Experimental and theoretical data are shown to be in good agreement. This fact confirms that the approximate analytical solution can be applied to solve large deflection problems in a wider range of loads than normally considered in the original linear theory.
Mots-clés : cantilever
Keywords: geometrically nonlinear bending, large deflections, distributed load, experiment.
@article{VTGU_2022_78_a7,
     author = {D. M. Zuev and D. D. Makarov and K. G. Okhotkin},
     title = {The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {99--111},
     publisher = {mathdoc},
     number = {78},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/}
}
TY  - JOUR
AU  - D. M. Zuev
AU  - D. D. Makarov
AU  - K. G. Okhotkin
TI  - The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 99
EP  - 111
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/
LA  - ru
ID  - VTGU_2022_78_a7
ER  - 
%0 Journal Article
%A D. M. Zuev
%A D. D. Makarov
%A K. G. Okhotkin
%T The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 99-111
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/
%G ru
%F VTGU_2022_78_a7
D. M. Zuev; D. D. Makarov; K. G. Okhotkin. The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 99-111. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/