The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 99-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes an approximate analytical solution for the geometrically nonlinear bending of a thin elastic cantilever beam under a uniformly distributed gravity load. The solution is based on the linearized Euler-Bernoulli equation of mechanics of materials. Traditionally, such a linear approach is used for small (geometrically linear) deflections. The authors have modified the original equation with an arc-length preservation condition. The modified solution allows one to obtain bending shapes, deflection, and axial displacement in the range of loads corresponding to geometrically nonlinear bending of a beam (large deflections). An experimental study is conducted to verify the proposed solution. A thin steel band bent by gravity is used as a sample. Changes in the length of the bent sample part allow one to obtain various dimensionless load parameters. The deflections and axial displacements averaged on experimental statistics are determined. Bending shapes are obtained by the least square method of 5$^{th}$ order. Experimental and theoretical data are shown to be in good agreement. This fact confirms that the approximate analytical solution can be applied to solve large deflection problems in a wider range of loads than normally considered in the original linear theory.
Mots-clés : cantilever
Keywords: geometrically nonlinear bending, large deflections, distributed load, experiment.
@article{VTGU_2022_78_a7,
     author = {D. M. Zuev and D. D. Makarov and K. G. Okhotkin},
     title = {The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {99--111},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/}
}
TY  - JOUR
AU  - D. M. Zuev
AU  - D. D. Makarov
AU  - K. G. Okhotkin
TI  - The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 99
EP  - 111
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/
LA  - ru
ID  - VTGU_2022_78_a7
ER  - 
%0 Journal Article
%A D. M. Zuev
%A D. D. Makarov
%A K. G. Okhotkin
%T The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 99-111
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/
%G ru
%F VTGU_2022_78_a7
D. M. Zuev; D. D. Makarov; K. G. Okhotkin. The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 99-111. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/

[1] Lopatin A.V. i dr., “Geometricheski nelineinaya model transformiruemogo oboda bolshoi kosmicheskoi antenny s gibkimi kompozitnymi elementami”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2012, no. 5 (45), 75–80

[2] Li M., Tang H.X., Roukes M.L., “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications”, Nat. Nanotechnol, 2:2 (2007), 114120 | DOI

[3] Li X., Bhushan B., Takashime K., Baek C., Kim Y., “Mechanical characterization of micro / nanoscale structures for MEMS / NEMS applications using nanoindentation techniques”, Ultramicroscopy, 97:1-4 (2003), 481–494 | DOI

[4] Zhang A., Chen G., “A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms”, j. Mech. Robot., 5:2 (2013), 1–10 | DOI

[5] Rohde F. V., “Large deflections of a cantilever beam with uniformly distributed load”, Q. Appl. Math., 1952, no. 2, 337–338

[6] Frisch-Fay R., “The analysis of a vertical and a horizontal cantilever under a uniformly distributed load”, j. Franklin Inst., 271:3 (1961), 192–199 | DOI

[7] Schmidt R., DaDeppo D.A., “Large deflections of heavy cantilever beams and columns”, Q. Appl. Math., 28:3 (1970), 441–444 | DOI

[8] Wang C.Y., “A critical review of the heavy elastica”, Int. J. Mech. Sci., 28:8 (1986), 549–559 | DOI

[9] Scarpello G.M., Ritelli D., “Exact Solutions of Nonlinear Equation of Rod Deflections Involving the Lauricella Hypergeometric Functions”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 838924, 22 pp. | DOI

[10] Chen L., “An integral approach for large deflection cantilever beams”, Int. J. Non. Linear. Mech. Elsevier, 45:3 (2010), 301–305 | DOI

[11] Belendez T., Neipp C., Belendez A., “Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials”, Int. J. Eng. Educ., 19:6 (2003), 885–892

[12] Barbieri E., “Analytical solution of the cantilevered elastica subjected to a normal uniformly distributed follower load”, Int. J. Solids Struct., 202 (2020), 486–494 | DOI

[13] Gosar Z., Kosel F., “Large deflection states of Euler-Bernoulli slender cantilever beam subjected to combined loading”, SYLWAN, 158:5 (2014), 489–499

[14] Lee H.C., Durelli A.J., Parks V.J., “Stresses in largely deflected cantilever beams subjected to gravity”, j. Appl. Mech. Trans. ASME, 36:2 (1964), 323–325 | DOI

[15] Bahari A.R., Yunus M.A., Abdul Rani M.N., Ayub M.A., Nalisa A., “Numerical and Experimental Investigations of Nonlinearity Behaviour in A Slender Cantilever Beam”, MATEC Web Conf., 217 (2018), 1–6 | DOI

[16] Brojan M., Cebron M., Kosel F., “Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end”, Acta Mech. Sin. Xuebao, 28:3 (2012), 863–869 | DOI

[17] Zuev D.M., Okhotkin K.G., “Modifitsirovannye vyrazheniya dlya strely progiba konsoli v sluchae poperechnoi nagruzki”, Kosmicheskie apparaty i tekhnologii, 4:1 (2020), 28–35 | DOI

[18] Timoshenko S.P., Gere D., Mekhanika materialov, uchebnik dlya vuzov, 2-e, ster. izd., Lan, SPb., 2002, 672 pp.

[19] Vardanyan G.S., Andreev V.I., Atarov N.M., Gorshkov A.A., Soprotivlenie materialov s osnovami teorii uprugosti teorii i plastichnosti, ASV, M., 1995, 572 pp.