Keywords: geometrically nonlinear bending, large deflections, distributed load, experiment.
@article{VTGU_2022_78_a7,
author = {D. M. Zuev and D. D. Makarov and K. G. Okhotkin},
title = {The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {99--111},
year = {2022},
number = {78},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/}
}
TY - JOUR AU - D. M. Zuev AU - D. D. Makarov AU - K. G. Okhotkin TI - The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 99 EP - 111 IS - 78 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/ LA - ru ID - VTGU_2022_78_a7 ER -
%0 Journal Article %A D. M. Zuev %A D. D. Makarov %A K. G. Okhotkin %T The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 99-111 %N 78 %U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/ %G ru %F VTGU_2022_78_a7
D. M. Zuev; D. D. Makarov; K. G. Okhotkin. The experimental and analytical study of geometrically nonlinear bending of a cantilever beam under a distributed gravity load. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 99-111. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a7/
[1] Lopatin A.V. i dr., “Geometricheski nelineinaya model transformiruemogo oboda bolshoi kosmicheskoi antenny s gibkimi kompozitnymi elementami”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2012, no. 5 (45), 75–80
[2] Li M., Tang H.X., Roukes M.L., “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications”, Nat. Nanotechnol, 2:2 (2007), 114120 | DOI
[3] Li X., Bhushan B., Takashime K., Baek C., Kim Y., “Mechanical characterization of micro / nanoscale structures for MEMS / NEMS applications using nanoindentation techniques”, Ultramicroscopy, 97:1-4 (2003), 481–494 | DOI
[4] Zhang A., Chen G., “A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms”, j. Mech. Robot., 5:2 (2013), 1–10 | DOI
[5] Rohde F. V., “Large deflections of a cantilever beam with uniformly distributed load”, Q. Appl. Math., 1952, no. 2, 337–338
[6] Frisch-Fay R., “The analysis of a vertical and a horizontal cantilever under a uniformly distributed load”, j. Franklin Inst., 271:3 (1961), 192–199 | DOI
[7] Schmidt R., DaDeppo D.A., “Large deflections of heavy cantilever beams and columns”, Q. Appl. Math., 28:3 (1970), 441–444 | DOI
[8] Wang C.Y., “A critical review of the heavy elastica”, Int. J. Mech. Sci., 28:8 (1986), 549–559 | DOI
[9] Scarpello G.M., Ritelli D., “Exact Solutions of Nonlinear Equation of Rod Deflections Involving the Lauricella Hypergeometric Functions”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 838924, 22 pp. | DOI
[10] Chen L., “An integral approach for large deflection cantilever beams”, Int. J. Non. Linear. Mech. Elsevier, 45:3 (2010), 301–305 | DOI
[11] Belendez T., Neipp C., Belendez A., “Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials”, Int. J. Eng. Educ., 19:6 (2003), 885–892
[12] Barbieri E., “Analytical solution of the cantilevered elastica subjected to a normal uniformly distributed follower load”, Int. J. Solids Struct., 202 (2020), 486–494 | DOI
[13] Gosar Z., Kosel F., “Large deflection states of Euler-Bernoulli slender cantilever beam subjected to combined loading”, SYLWAN, 158:5 (2014), 489–499
[14] Lee H.C., Durelli A.J., Parks V.J., “Stresses in largely deflected cantilever beams subjected to gravity”, j. Appl. Mech. Trans. ASME, 36:2 (1964), 323–325 | DOI
[15] Bahari A.R., Yunus M.A., Abdul Rani M.N., Ayub M.A., Nalisa A., “Numerical and Experimental Investigations of Nonlinearity Behaviour in A Slender Cantilever Beam”, MATEC Web Conf., 217 (2018), 1–6 | DOI
[16] Brojan M., Cebron M., Kosel F., “Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end”, Acta Mech. Sin. Xuebao, 28:3 (2012), 863–869 | DOI
[17] Zuev D.M., Okhotkin K.G., “Modifitsirovannye vyrazheniya dlya strely progiba konsoli v sluchae poperechnoi nagruzki”, Kosmicheskie apparaty i tekhnologii, 4:1 (2020), 28–35 | DOI
[18] Timoshenko S.P., Gere D., Mekhanika materialov, uchebnik dlya vuzov, 2-e, ster. izd., Lan, SPb., 2002, 672 pp.
[19] Vardanyan G.S., Andreev V.I., Atarov N.M., Gorshkov A.A., Soprotivlenie materialov s osnovami teorii uprugosti teorii i plastichnosti, ASV, M., 1995, 572 pp.