On the shape of the brachistichrone rotating in a vertical plane
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper aims to study the influence of the brachistochrone rotating in its own plane on the gutter shape along which a body moves. The problem is solved with a moving basis, which allows one to account for all forces exerted on the body. Introduction of the moving basis yields a compact system of dynamical equations, whose validity was proven in previous author's papers. In limiting cases, such an approach is used to solve analytically the obtained equations of motion and to determine the shape of curves depending on the parameters in the equations by tabular integration. The latter is illustrated in the figures presented. According to the energy conservation law, which accounts for the rotation of the entire system as a whole, the resulting equations also include the angular frequency of rotation as an additional parameter. In this paper, the case of steady rotation is studied. Such conditions have a significant impact on the brachistochrone. In the limiting case of low rotational speeds, the curve, as it should be, degenerates smoothly into a classical brachistochrone, which is justified by the numerical methods used.
Keywords: rotational speed, dynamical equations of motion.
Mots-clés : brachistochrone
@article{VTGU_2022_78_a6,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {On the shape of the brachistichrone rotating in a vertical plane},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {86--98},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a6/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - On the shape of the brachistichrone rotating in a vertical plane
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 86
EP  - 98
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a6/
LA  - ru
ID  - VTGU_2022_78_a6
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T On the shape of the brachistichrone rotating in a vertical plane
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 86-98
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a6/
%G ru
%F VTGU_2022_78_a6
S. O. Gladkov; S. B. Bogdanova. On the shape of the brachistichrone rotating in a vertical plane. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 86-98. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a6/

[1] Gladkov S.O., Bogdanova S.B., “Geometricheskii fazovyi perekhod v zadache o brakhistokhrone”, Uchenye zapiski fizicheskogo fakulteta MGU, 2016, no. 1, 161101, 5 pp.

[2] Gladkov S.O., Bogdanova S.B., “O traektorii dvizheniya tela, vkhodyaschego v zhidkost pod proizvolnym uglom”, Uchenye zapiski fizicheskogo fakulteta MGU, 2016, no. 4, 164002, 5 pp.

[3] Gladkov S.O., Bogdanova S.B., “Obobschennye dinamicheskie uravneniya ploskogo krivolineinogo dvizheniya materialnogo tela po zhelobu s uchetom sil treniya (ikh chislennyi analiz v nekotorykh chastnykh sluchayakh)”, Uchenye zapiski fizicheskogo fakulteta MGU, 2017, no. 1, 171101, 5 pp.

[4] Gladkov S.O., Bogdanova S.B., “K teorii dvizheniya sharika po vraschayuscheisya brakhistokhrone s uchetom sil treniya”, Uchenye zapiski fizicheskogo fakulteta MGU, 2017, 172101, 6 pp.

[5] Gladkov S.O., Bogdanova S.B., “O klasse dvukhmernykh geodezicheskikh krivykh v pole sily tyazhesti”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 58, 5–13 | DOI

[6] Gladkov S.O., Bogdanova S.B., “K teorii dvizheniya tel s peremennoi massoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 83–91 | DOI

[7] Gladkov S.O., Bogdanova S.B., “K teorii prostranstvennoi brakhistokhrony”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 53–60 | DOI

[8] Gladkov S.O., Bogdanova S.B., “Analytical and numerical solution of the problem on brachistochrones in some general cases”, Journal of Mathematical Sciences, 245:4 (2020), 528–537 | DOI

[9] Gladkov S.O., Bogdanova S.B., “On a class of planar geometrical curves with constant reaction forces acting on particles moving along them”, Journal of Mathematical Sciences, 257:1 (2021), 27–30 | DOI

[10] Gladkov S.O., Bogdanova S.B., “K voprosu ucheta sily soprotivleniya v sharnirnoi tochke krepleniya fizicheskogo mayatnika i ee vliyanie na dinamiku dvizheniya”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 27:1 (2019), 54–62 | DOI

[11] Gladkov S.O., “Ob odnom metodicheskom podkhode pri vyvode osnovnykh fizicheskikh uravnenii”, Fizicheskoe obrazovanie v vuzakh, 27:2 (2021), 5–12

[12] Gladkov S.O., “K voprosu o vychislenii vremeni ostanovki vraschayuschegosya v vyazkom kontinuume tsilindricheskogo tela i vremeni uvlecheniya soosnogo s nim vneshnego tsilindra”, Zhurnal tekhnicheskoi fiziki, 88:3 (2018), 337–341 | DOI

[13] Landau L.D., Lifshits E.M., Mekhanika, Nauka, M., 1973, 207 pp.

[14] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1988, 733 pp.