To the issue of the modeling of oxide film fracture during aluminum particle ignition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 74-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Aluminum particles are coated with a protective oxide film. It is known that the oxide film condition controls the aluminum oxidation kinetics. The fracture of the film induces the intensification of oxidation. This feature encourages authors to simulate the film condition after fraction caused by thermomechanical stress. The static strength of the film is a well-studied issue, while the fracture dynamics is still a relevant problem. In this paper, two coefficients describing the film condition after fraction are proposed. The first is based on the ratio of activation rates of critical flaws at the fracture initiation and in a hypothetical case without oxide film relaxation. The second represents the ratio of total times of the activated flaw growth during fracture and under specific reference conditions. Both coefficients are shown to produce adequate results with regard to predicting of more sufficient fractures at higher stress rates. It is assumed that the aluminum particle surface, which is exposed to an oxidizer after film fracture, is proportional to the proposed coefficients. With this assumption, the particle ignition is simulated. It is shown that higher rates of particle heating during ignition induce considerable fractures of the oxide film and the following intense oxidation.
Keywords: ignition, aluminum, alumina, kinetics, oxidation.
Mots-clés : fracture
@article{VTGU_2022_78_a5,
     author = {V. A. Babuk and N. L. Budnyi},
     title = {To the issue of the modeling of oxide film fracture during aluminum particle ignition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {74--85},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a5/}
}
TY  - JOUR
AU  - V. A. Babuk
AU  - N. L. Budnyi
TI  - To the issue of the modeling of oxide film fracture during aluminum particle ignition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 74
EP  - 85
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a5/
LA  - ru
ID  - VTGU_2022_78_a5
ER  - 
%0 Journal Article
%A V. A. Babuk
%A N. L. Budnyi
%T To the issue of the modeling of oxide film fracture during aluminum particle ignition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 74-85
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a5/
%G ru
%F VTGU_2022_78_a5
V. A. Babuk; N. L. Budnyi. To the issue of the modeling of oxide film fracture during aluminum particle ignition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 74-85. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a5/

[1] Babuk V.A., Budnyi N.L., Nizyaev A.A., “Simulation of Condensed Products Formation at the Surface of a Metalized Solid Propellant”, Innovative Energetic Materials: Properties, Combustion Performance and Application, eds. W. Pang, L. DeLuca, A. Gromov, A. Cumming, Springer, Singapore, 2020, 523–547 | DOI

[2] Rosenband V., Gany A., Timnat Y.M., “Effect of mechanical stresses on heterogeneous oxidation of metals”, Oxidation of Metals, 43:1 (1995), 141–156 | DOI

[3] Crump J.E., Prentice J.L., Kraeutle K.J., “Role of scanning electron microscope in the study of propellant combustion. I. Behavior of metal additives”, Combustion Science and Technology, 1:3 (1969), 205–223 | DOI

[4] Lokenbakh A.K., Zaporina N.A., Knipele A.Z., Strod V.V., Lepin L.K., “Vliyanie uslovii nagreva na aglomeratsiyu poroshkoobraznogo alyuminiya v atmosfere vozdukha”, Fizika goreniya i vzryva, 21:1 (1985), 73–82 | DOI

[5] Pokhil P.M., Belyaev A.F., Frolov Yu.V. i dr., Gorenie poroshkoobraznykh metallov v ak tivnykh sredakh, Nauka, M., 1972, 294 pp.

[6] Sundaram D.S., Puri P., Yang V., “A general theory of ignition and combustion of nano- and micron-sized aluminum particles”, Combustion and Flame, 169 (2016), 94–109 | DOI

[7] Fedorov A.V., Kharlamova Yu.V., “Vosplamenenie chastitsy alyuminiya”, Fizika goreniya i vzryva, 39:5 (2003), 65–68 | DOI

[8] Babuk V.A., Budnyi N.L., “Smoke oxide particles formation at the burning surface of condensed systems”, Acta Astronautica, 158 (2019), 264–271 | DOI

[9] Denoual C., Barbier G., Hild F., “A Probabilistic Approach for Fragmentation of Brittle Materials under Dynamic Loading”, Comptes rendus de l'Academie des sciences. Serie IIb, Mecanique, 325:12 (1997), 685–691 | DOI

[10] Hild F., Denoual C., Forquin P., Brajer X., “On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials”, Computers and Structures, 81:12 (2003), 1241–1253 | DOI

[11] Forquin P., Hild F., “A Probabilistic Damage Model of the Dynamic Fragmentation Process in Brittle Materials”, Advances in Applied Mechanics, 44 (2010), 1–72 | DOI

[12] Forquin P., “Brittle materials at high-loading rates: an open area of research”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375:2085 (2017), 20160436 | DOI

[13] Rosenband V., Gany A., “A Microscopic and Analytic Study of Aluminum Particles Agglomeration”, Combustion Science and Technology, 166:1 (2001), 91–108 | DOI

[14] Danzer R., Supancic P., Pascual J., Lube T., “Fracture statistics of ceramics - Weibull statistics and deviations from Weibull statistics”, Engineering Fracture Mechanics, 74:18 (2007), 2919–2932 | DOI

[15] Rosier J., Harders H., Baker M., Mechanical Behaviour of Engineering Materials. Metals, Ceramics, Polymers, and Composites, Springer-Verlag, Berlin, 2007, xv+534 pp. | DOI