Investigation of acoustic characteristics of a single supersonic jet flowing into a flooded space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the acoustic characteristics of a single supersonic jet flowing from a nozzle of a rocket engine into a flooded space at different pressure ratios are studied. A system of the Favre-averaged Navier-Stokes equations is used to describe the unsteady flow of a viscous compressible heat-conducting gas in a supersonic Laval nozzle and an outflowing jet. The system is enclosed by the ideal gas law. The implementation of the physical and mathematical model and the numerical studies are carried out using the OpenFOAM Extended open platform based on the modified dbnsTurbFoam solver. A conical nozzle with an opening angle of 45$^{\circ}$ at the Mach number of 3 at the nozzle exit is considered in this study. Air is used as the working gas. Amplitude-frequency spectra of acoustic radiation at the point located at a distance from the nozzle outlet are obtained at different pressure ratios of the outflowing supersonic jet. Analysis of the amplitude-frequency characteristics of the jet under study shows that the maxima occur mainly at low frequencies. The maximum oscillation amplitude for the considered jet configurations is revealed at a pressure ratio of 1 on a frequency of 787 Hz. The maximum sound pressure level is 149 dB.
Keywords: gas dynamics, mathematical modeling, supersonic jet, sound pressure.
@article{VTGU_2022_78_a3,
     author = {A. A. Askerov and A. V. Chervakova and K. V. Kostushin},
     title = {Investigation of acoustic characteristics of a single supersonic jet flowing into a flooded space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {49--59},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a3/}
}
TY  - JOUR
AU  - A. A. Askerov
AU  - A. V. Chervakova
AU  - K. V. Kostushin
TI  - Investigation of acoustic characteristics of a single supersonic jet flowing into a flooded space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 49
EP  - 59
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a3/
LA  - ru
ID  - VTGU_2022_78_a3
ER  - 
%0 Journal Article
%A A. A. Askerov
%A A. V. Chervakova
%A K. V. Kostushin
%T Investigation of acoustic characteristics of a single supersonic jet flowing into a flooded space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 49-59
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a3/
%G ru
%F VTGU_2022_78_a3
A. A. Askerov; A. V. Chervakova; K. V. Kostushin. Investigation of acoustic characteristics of a single supersonic jet flowing into a flooded space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 49-59. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a3/

[1] Kagenov A.M., Kostyushin K.V., Aligasanova K.L., Kotonogov V.A., “Matematicheskoe modelirovanie vzaimodeistviya sostavnoi sverkhzvukovoi strui s pregradoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 72–79 | DOI

[2] Kagenov A.M., “Chislennoe issledovanie vliyaniya strui dvigatelnoi ustanovki kosmicheskogo apparata «EkzoMars» na eroziyu poverkhnosti Marsa”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2016, no. 2 (40), 71–81 | DOI

[3] Vetlutskii V.N., Ganimedov V.L., Muchnaya M.I., “Issledovanie techeniya v vyazkoi strue, istekayuschei cherez sverkhzvukovoe soplo v polubeskonechnoe zatoplennoe prostranstvo”, Prikladnaya mekhanika i tekhnicheskaya fizika, 50:6 (2009), 6–15

[4] Gross A., Weiland C., “Numerical simulation of separated cold gas nozzle flows”, j. Propulsion Power., 20:3 (2004), 509–519 | DOI

[5] Xiao Q., Tsai H.M., Papamoschou D., “Numerical investigation of supersonic nozzle flow separation”, AIAA J., 45:3 (2007), 532–541 | DOI

[6] Zapryagaev V.I., Kavun I.N., Kundasev S.G., “Raschetno-eksperimentalnoe issledovanie gazodinamicheskoi struktury sverkhzvukovoi pererasshirennoi strui”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2010, no. 4, 58–64

[7] Powell A., First Noise Research Interim Report: a “Schlieren” Study of Small Scale Air Jets and Some Noise Measurements on Two-inch Diameter Air Jets, University College, Southampton, 1951

[8] Powell A., “On the mechanism of choked jets noise”, Pros. Phys. Soc., 1366 (1953), 10–39 | DOI

[9] Powell A., “On the edgetone”, j. Acoustical Society of America, 33:4 (1961), 395–409 | DOI

[10] Nikolin S.A., Sokol G.I., “Matematicheskoe modelirovanie akusticheskikh izluchenii pri vzaimodeistvii sverkhzvukovoi strui s ploskoi pregradoi”, Vestnik Dneprovskogo natsionalnogo universiteta, 26:4 (2018), 73–80

[11] Glazunov A.A., Kagenov A.M., Kostyushin K.V., Eremin I.V., Aligasanova K.L., Kotonogov V.A., “Matematicheskoe modelirovanie vzaimodeistviya odinochnoi sverkhzvukovoi strui s pregradami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 87–101 | DOI

[12] Menter F.R., Kuntz M., Langtry R., “Ten years of industrial experience with the SST Turbulence model”, Proceedings of the 4th International Symposium on Turbulence. Heat and Mass Transfer, Begell House Inc., West Redding, 2003, 625–632

[13] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 442 pp. | DOI

[14] Barth T.J., Jespersen T.J., The Design and application of upwind schemes on unstructured meshes, AIAA Paper No 89–366, 1989 | DOI

[15] Pinchukov V.I., “O neyavnykh absolyutno ustoichivykh skhemakh Runge-Kutty chetvertogo poryadka”, Vychislitelnye tekhnologii, 7:1 (2002), 96–105

[16] Nussbaumer G., Bystroe preobrazovanie Fure i algoritmy vychisleniya svertok, Radio i svyaz, M., 1985, 248 pp.

[17] M.M. Kan (red.), Osnovy issledovanii i izobretatelstva v mashinostroenii : praktikum, ucheb. posobie, Vysheishaya shkola, Minsk, 2020, 312 pp.

[18] Yastrebov I.P., Diskretizatsiya nepreryvnykh signalov vo vremeni. Teorema Kotelnikova, Nizhegor. gos. un-t im. N.I. Lobachevskogo, N. Novgorod, 2012, 31 pp.