Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Left-invariant para-complex structures on six-dimensional nilpotent Lie groups are considered. A complete list of six-dimensional nilpotent Lie groups that admit para-Kähler structures is obtained, explicit expressions for para-complex structures are found, and curvature properties of associated para-Kähler metrics are investigated. It is shown that paracomplex structures are nilpotent and the corresponding para-Kähler metrics are Ricci-flat.
Keywords: six-dimensional nilpotent Lie groups, symplectic Lie groups, left-invariant para-Kahler structures.
Mots-clés : para-complex structures
@article{VTGU_2022_78_a2,
     author = {N. K. Smolentsev},
     title = {Left-invariant {para-K\"ahler} structures on six-dimensional nilpotent {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--48},
     publisher = {mathdoc},
     number = {78},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 38
EP  - 48
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/
LA  - ru
ID  - VTGU_2022_78_a2
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 38-48
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/
%G ru
%F VTGU_2022_78_a2
N. K. Smolentsev. Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/