Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Left-invariant para-complex structures on six-dimensional nilpotent Lie groups are considered. A complete list of six-dimensional nilpotent Lie groups that admit para-Kähler structures is obtained, explicit expressions for para-complex structures are found, and curvature properties of associated para-Kähler metrics are investigated. It is shown that paracomplex structures are nilpotent and the corresponding para-Kähler metrics are Ricci-flat.
Keywords:
six-dimensional nilpotent Lie groups, symplectic Lie groups, left-invariant para-Kahler structures.
Mots-clés : para-complex structures
Mots-clés : para-complex structures
@article{VTGU_2022_78_a2,
author = {N. K. Smolentsev},
title = {Left-invariant {para-K\"ahler} structures on six-dimensional nilpotent {Lie} groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {38--48},
publisher = {mathdoc},
number = {78},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/}
}
TY - JOUR AU - N. K. Smolentsev TI - Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 38 EP - 48 IS - 78 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/ LA - ru ID - VTGU_2022_78_a2 ER -
%0 Journal Article %A N. K. Smolentsev %T Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 38-48 %N 78 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/ %G ru %F VTGU_2022_78_a2
N. K. Smolentsev. Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/