Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Left-invariant para-complex structures on six-dimensional nilpotent Lie groups are considered. A complete list of six-dimensional nilpotent Lie groups that admit para-Kähler structures is obtained, explicit expressions for para-complex structures are found, and curvature properties of associated para-Kähler metrics are investigated. It is shown that paracomplex structures are nilpotent and the corresponding para-Kähler metrics are Ricci-flat.
Keywords: six-dimensional nilpotent Lie groups, symplectic Lie groups, left-invariant para-Kahler structures.
Mots-clés : para-complex structures
@article{VTGU_2022_78_a2,
     author = {N. K. Smolentsev},
     title = {Left-invariant {para-K\"ahler} structures on six-dimensional nilpotent {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--48},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 38
EP  - 48
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/
LA  - ru
ID  - VTGU_2022_78_a2
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 38-48
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/
%G ru
%F VTGU_2022_78_a2
N. K. Smolentsev. Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 38-48. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a2/

[1] Benson C., Gordon C.S., “Kahler and symplectic structures on nilmanifold”, Topology, 27 (1988), 513–518 | DOI

[2] Cordero L.A., Fernandez M., Ugarte L., “Pseudo-Kahler metrics on six-dimensional nilpotent Lie algebras”, j. of Geom. and Phys., 50 (2004), 115–137 | DOI

[3] Smolentsev N.K., “Kanonicheskie psevdo-kelerovy metriki na shestimernykh nilpotentnykh gruppakh Li”, Vestnik Kemerovskogo gosudarstvennogo universiteta. Geometriya i analiz, 3/1:47 (2011), 155–168

[4] Alekseevskii D.V., Medori K., Tomassini A., “Odnorodnye para-kelerovy mnogoobraziya Einshteina”, Uspekhi matematicheskikh nauk, 64:1 (385) (2009), 3–50 | DOI

[5] Gray A., “Curvature identities for Hermitian and almost Hermitian manifolds”, Tohoku Math. J., 28:4 (1976), 601–612 | DOI

[6] Rizza G.B., “Varieta parakahleriane”, Ann. Mat. Pura Appl., 98 (1974), 47–61

[7] Schafer L., “Conical Ricci-flat nearly Parakahlerian Manifolds”, Ann. Global Anal. Geom., 45:1 (2014), 11–24

[8] Banaru M., “A note on parakahlerian manifolds”, Kyungpook Math. J., 43:1 (2003), 49–61

[9] Libermann P., “Sur les structures presque paracomplexes”, Comptes rendus de l'Academie des Sciences, 234 (1952), 2517–2519

[10] Kobayasi Sh., Namidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981, 416 pp.

[11] Goze M., Khakimdjanov Y., Medina A., “Symplectic or contact structures on Lie groups”, Differential Geom. Appl., 21:1 (2004), 41–54 | DOI