Sloshing of a liquid fuel in toroidal tanks with account for capillary effect
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 151-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical approach is proposed to solve the linear sloshing problem of an incompressible inviscid liquid with account for surface tension effects, which are predominant in the low-gravity environment. A variational formulation is derived by the linearization of motion equations for the liquid near its initial equilibrium state with consideration of a pressure drop on the free surface and a free-end boundary condition on the contact line. The continuous problem domain is discretized by the finite element method. After discretization, the classical generalized eigenvalue problem is obtained, whose solutions are the natural frequencies and mode shapes. Several examples show the effect of the Bond number and the fluid-filled volume on the liquid behavior in toroidal tanks. A comparison of numerical results with experimental measurements under ground conditions reveals that under microgravity condition, the surface tension force and the boundary condition on the contact line play an important role when determining the natural frequencies and mode shapes of the liquid sloshing. Each fluid-filled volume has its own characteristic Bond number, above which the natural frequencies approximate to the experimental values obtained under ground conditions. The presented results can be used in the coupling dynamic analysis of a spacecraft with propellant tanks. The author is grateful to the supervisor associate professor A.N. Temnov for help in formulating the problem and discussion of the results of the work.
Keywords: microgravity, contact line, natural frequency and mode shapes, toroidal tank, finite element method.
Mots-clés : surface tension force
@article{VTGU_2022_78_a11,
     author = {Z. Yu},
     title = {Sloshing of a liquid fuel in toroidal tanks with account for capillary effect},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {151--165},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a11/}
}
TY  - JOUR
AU  - Z. Yu
TI  - Sloshing of a liquid fuel in toroidal tanks with account for capillary effect
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 151
EP  - 165
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a11/
LA  - ru
ID  - VTGU_2022_78_a11
ER  - 
%0 Journal Article
%A Z. Yu
%T Sloshing of a liquid fuel in toroidal tanks with account for capillary effect
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 151-165
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a11/
%G ru
%F VTGU_2022_78_a11
Z. Yu. Sloshing of a liquid fuel in toroidal tanks with account for capillary effect. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 151-165. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a11/

[1] Abramson H.N., The Dynamic Behavior of liquids in Moving Containers, NASA SP-106, 1966, 467 pp.

[2] Moiseev N.N., Petrov A.A., Chislennye metody rascheta sobstvennykh chastot kolebanii ogranichennogo ob'ema zhidkosti, Vychislit. tsentr AN SSSR, M., 1966, 272 pp.

[3] Mikishev G.N., Eksperimentalnye metody v dinamike kosmicheskikh apparatov, Mashinostroenie, M., 1978, 247 pp.

[4] Myshkis A.D., Babskii V.G., Zhukov M.Yu., Kopachevskii N.D., Slobozhanin L.A., Tyuptsov A.D., Metody resheniya zadachi gidromekhaniki dlya uslovii nevesomosti, Naukova dumka, Kiev, 1992, 592 pp.

[5] Dodge F.T., The new “Dynamic behavior of liquids in moving containers”, Southwest Research Inst., 2000, 195 pp.

[6] Polevikov V.K., “O metodakh chislennogo modelirovaniya ravnovesnykh kapillyarnykh po verkhnostei”, Differentsialnye uravneniya, 35:7 (1999), 975–981

[7] Yang D., Yue B., Zhu L., Song X., “Solving shapes of hydrostatic surface in rectangular and revolving symmetrical tanks under microgravity using shooting method”, Chinese Journal of Space Science, 32:1 (2012), 85–91 | DOI

[8] Dodge F.T., Garza L.R., “Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravity”, ASME. J. Appl. Mech., 34:3 (1967), 555–562 | DOI

[9] Wang Z., Deng Z., “Sloshing of Liquid in Spherical Tank at Low-gravity Environments”, Chinese Journal of Space Science, 5:4 (1985), 294–302

[10] Wang Z., Deng Z., “On the Sloshing of Liquid in a Partially Filled Rectangular Tank under Low-gravity Condition”, Journal of Tsinghua University, 26:3 (1986), 1–9

[11] Utsumi M., “Low-gravity propellant slosh analysis using spherical coordinates”, Journal of Fluids and Structures, 12:1 (1998), 57–83 | DOI

[12] Chu W., “Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank”, ASME. J. Appl. Mech., 37:3 (1970), 828–837 | DOI

[13] Dodge F.T., Green S.T., Kana D.D., Fluid management technology: liquid slosh dynamics and control, NASA CR-1891, 1991, 198 pp.

[14] Wang W., Li J., Wang T., “Modal analysis of liquid sloshing with different contact line boundary conditions using FEM”, Journal of Sound and Vibration, 317:3–5 (2008), 739–759 | DOI

[15] Yui Chzhaokai, Temnov A.N., “Issledovanie ravnovesnoi svobodnoi poverkhnosti kapillyarnoi zhidkosti v toroidalnom sosude”, Inzhenernyi zhurnal: nauka i innovatsii, 2021, no. 3, 1–11 | DOI

[16] Yui Chzhaokai, Temnov A.N., “Ravnovesie i kolebaniya svobodnoi poverkhnosti zhidkogo topliva v koaksialno-tsilindricheskikh sosudakh v usloviyakh mikrogravitatsii”, Inzhenernyi zhurnal: nauka i innovatsii, 2021, no. 8, 1–15 | DOI

[17] Kirichevskii R.V., Skrinnikova A.V., “Vliyanie approksimiruyuschikh funktsii pri postroenii matritsy zhestkosti konechnogo elementa na skorost skhodimosti metoda konechnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 57, 26–38 | DOI

[18] Bathe K.J., Finite element procedures, 2nd ed., Waterton, 2014, 1065 pp.

[19] Guyan R.J., “Reduction of stiffness and mass matrices”, AIAA Journal, 3:2 (1965), 380–380 | DOI

[20] Symons E.P., Zero-gravity equilibrium configuration of liquid-vapor interface in toroidal tanks, NASA TN D-6076, 1970, 24 pp.

[21] Meserole J.S., Fortini A., “Slosh dynamics in a toroidal tank”, Journal of Spacecraft and Rockets, 24:6 (1987), 523–531 | DOI