Formal derivation of mechanical motion magnitudes
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 143-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum — is considered.
Keywords: Umov vector, backward impulse, magnitude, order.
Mots-clés : motion
@article{VTGU_2022_78_a10,
     author = {V. D. Pavlov},
     title = {Formal derivation of mechanical motion magnitudes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {143--150},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/}
}
TY  - JOUR
AU  - V. D. Pavlov
TI  - Formal derivation of mechanical motion magnitudes
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 143
EP  - 150
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/
LA  - ru
ID  - VTGU_2022_78_a10
ER  - 
%0 Journal Article
%A V. D. Pavlov
%T Formal derivation of mechanical motion magnitudes
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 143-150
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/
%G ru
%F VTGU_2022_78_a10
V. D. Pavlov. Formal derivation of mechanical motion magnitudes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 143-150. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/

[1] Aliev A.R., Radzhabov Sh.Sh., “Razlozhenie po sobstvennym funktsiyam magnitnogo operatora Shredingera v ogranichennykh oblastyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 69, 5–14 | DOI

[2] Mischarina E.Yu., Libin E.E., Bubenchikov M., “O reshenii nestatsionarnogo uravneniya Shredingera”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2016, no. 5 (43), 28–34 | DOI

[3] Gladkov S.O., Bogdanova S.B., “K teorii dvizheniya tel s peremennoi massoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 83–91 | DOI

[4] Kovalevskii A.P., Shatalin E.V., “Vybor regressionnoi modeli zavisimosti massy tela ot rosta s pomoschyu empiricheskogo mosta”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 5(37), 35–47 | DOI

[5] Pavlov V.D., “Matematicheskie modeli rezonansnykh i antirezonansnykh protsessov”, Vestnik Uralskogo gosudarstvennogo universiteta putei soobscheniya, 2021, no. 1 (49), 17–27 | DOI

[6] Belov N.N., Yugov N.T., Sammel A.Yu., Stepanov E.Yu., “Issledovanie prochnosti prozrachnoi broni na vysokoskorostnoi udar tsilindricheskim udarnikom metodom kompyuternogo modelirovaniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 67, 69–77 | DOI

[7] Gerasimov A.V., Pashkov S.V., “Chislennoe modelirovanie gruppovogo udara vysokoskorostnykh elementov po kosmicheskomu apparatu”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 3 (29), 57–64

[8] Afanaseva S.A., Biryukov Yu.A., Belov N.N., Burkin V.V., Ischenko A.N., Kartashov Yu.I., Kasimov V.Z., Fomenko V.V., Yugov N.T., “Povyshenie effektivnosti vysokoskorostnogo metaniya udarnikov s primeneniem vysokoenergeticheskikh topliv s nanodispersnymi napolnitelyami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2 (18), 67–79

[9] Pavlov V.D., “Magnitnyi potok i ego kvantovanie”, Izvestiya Ufimskogo nauchnogo tsentra RAN, 2020, no. 4, 25–28 | DOI