Formal derivation of mechanical motion magnitudes
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 143-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum — is considered.
Keywords: Umov vector, backward impulse, magnitude, order.
Mots-clés : motion
@article{VTGU_2022_78_a10,
     author = {V. D. Pavlov},
     title = {Formal derivation of mechanical motion magnitudes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {143--150},
     publisher = {mathdoc},
     number = {78},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/}
}
TY  - JOUR
AU  - V. D. Pavlov
TI  - Formal derivation of mechanical motion magnitudes
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 143
EP  - 150
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/
LA  - ru
ID  - VTGU_2022_78_a10
ER  - 
%0 Journal Article
%A V. D. Pavlov
%T Formal derivation of mechanical motion magnitudes
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 143-150
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/
%G ru
%F VTGU_2022_78_a10
V. D. Pavlov. Formal derivation of mechanical motion magnitudes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 143-150. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a10/