On the number of eigenvalues of a model operator on a one-dimensional lattice
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37
Voir la notice de l'article provenant de la source Math-Net.Ru
A model operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, corresponding to the Hamiltonian of a system of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function is considered. The function describes the transfer of a particle from site to sites interacting using a short-range attraction potential $\nu_{\mu}$, $\mu = (\mu_{0},\mu_{1},\mu_{2},\mu_{3}) \in\mathbb{R}_{+}^{4}$. The detailed descriptions of changes in the number of eigenvalues of the energy operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, relative to values of the particle interaction vector $\mu\in\mathbb{R}_{+}^{4}$ and the total quasi-momentum $k\in \mathbb{T}$ of the system of two particles is presented.
Keywords:
Schrodinger operator, Hamiltonian of a system of two particles, one-dimensional lattice, invariant subspaces, eigenvalue, essential spectrum, unitarily equivalent operator, asymptotics for the Fredholm determinant.
Mots-clés : dispersion relations
Mots-clés : dispersion relations
@article{VTGU_2022_78_a1,
author = {A. A. Imomov and I. N. Bozorov and A. M. Hurramov},
title = {On the number of eigenvalues of a model operator on a one-dimensional lattice},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--37},
publisher = {mathdoc},
number = {78},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/}
}
TY - JOUR AU - A. A. Imomov AU - I. N. Bozorov AU - A. M. Hurramov TI - On the number of eigenvalues of a model operator on a one-dimensional lattice JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 22 EP - 37 IS - 78 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/ LA - ru ID - VTGU_2022_78_a1 ER -
%0 Journal Article %A A. A. Imomov %A I. N. Bozorov %A A. M. Hurramov %T On the number of eigenvalues of a model operator on a one-dimensional lattice %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 22-37 %N 78 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/ %G ru %F VTGU_2022_78_a1
A. A. Imomov; I. N. Bozorov; A. M. Hurramov. On the number of eigenvalues of a model operator on a one-dimensional lattice. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/