On the number of eigenvalues of a model operator on a one-dimensional lattice
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37

Voir la notice de l'article provenant de la source Math-Net.Ru

A model operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, corresponding to the Hamiltonian of a system of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function is considered. The function describes the transfer of a particle from site to sites interacting using a short-range attraction potential $\nu_{\mu}$, $\mu = (\mu_{0},\mu_{1},\mu_{2},\mu_{3}) \in\mathbb{R}_{+}^{4}$. The detailed descriptions of changes in the number of eigenvalues of the energy operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, relative to values of the particle interaction vector $\mu\in\mathbb{R}_{+}^{4}$ and the total quasi-momentum $k\in \mathbb{T}$ of the system of two particles is presented.
Keywords: Schrodinger operator, Hamiltonian of a system of two particles, one-dimensional lattice, invariant subspaces, eigenvalue, essential spectrum, unitarily equivalent operator, asymptotics for the Fredholm determinant.
Mots-clés : dispersion relations
@article{VTGU_2022_78_a1,
     author = {A. A. Imomov and I. N. Bozorov and A. M. Hurramov},
     title = {On the number of eigenvalues of a model operator on a one-dimensional lattice},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--37},
     publisher = {mathdoc},
     number = {78},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/}
}
TY  - JOUR
AU  - A. A. Imomov
AU  - I. N. Bozorov
AU  - A. M. Hurramov
TI  - On the number of eigenvalues of a model operator on a one-dimensional lattice
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 22
EP  - 37
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/
LA  - ru
ID  - VTGU_2022_78_a1
ER  - 
%0 Journal Article
%A A. A. Imomov
%A I. N. Bozorov
%A A. M. Hurramov
%T On the number of eigenvalues of a model operator on a one-dimensional lattice
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 22-37
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/
%G ru
%F VTGU_2022_78_a1
A. A. Imomov; I. N. Bozorov; A. M. Hurramov. On the number of eigenvalues of a model operator on a one-dimensional lattice. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/