On the number of eigenvalues of a model operator on a one-dimensional lattice
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, corresponding to the Hamiltonian of a system of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function is considered. The function describes the transfer of a particle from site to sites interacting using a short-range attraction potential $\nu_{\mu}$, $\mu = (\mu_{0},\mu_{1},\mu_{2},\mu_{3}) \in\mathbb{R}_{+}^{4}$. The detailed descriptions of changes in the number of eigenvalues of the energy operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, relative to values of the particle interaction vector $\mu\in\mathbb{R}_{+}^{4}$ and the total quasi-momentum $k\in \mathbb{T}$ of the system of two particles is presented.
Keywords: Schrodinger operator, Hamiltonian of a system of two particles, one-dimensional lattice, invariant subspaces, eigenvalue, essential spectrum, unitarily equivalent operator, asymptotics for the Fredholm determinant.
Mots-clés : dispersion relations
@article{VTGU_2022_78_a1,
     author = {A. A. Imomov and I. N. Bozorov and A. M. Hurramov},
     title = {On the number of eigenvalues of a model operator on a one-dimensional lattice},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--37},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/}
}
TY  - JOUR
AU  - A. A. Imomov
AU  - I. N. Bozorov
AU  - A. M. Hurramov
TI  - On the number of eigenvalues of a model operator on a one-dimensional lattice
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 22
EP  - 37
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/
LA  - ru
ID  - VTGU_2022_78_a1
ER  - 
%0 Journal Article
%A A. A. Imomov
%A I. N. Bozorov
%A A. M. Hurramov
%T On the number of eigenvalues of a model operator on a one-dimensional lattice
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 22-37
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/
%G ru
%F VTGU_2022_78_a1
A. A. Imomov; I. N. Bozorov; A. M. Hurramov. On the number of eigenvalues of a model operator on a one-dimensional lattice. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 22-37. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a1/

[1] Mattis D.C., “The few-body problem on a lattice”, Rev. Mod. Phys., 58:2 (1986), 361–379

[2] Mogilner A.I., “Hamiltonians of solid state physics at few-particle discrete Schrodinger operators: problems and results”, Advances in Sov. Math., 5 (1991), 139–194

[3] Malishev V.A., Minlos R.A., Linear infinite-particle operators, trl. by A. Mason, Translations of Mathematical Monographs, 143, American Mathematical Society, Providence, RI, 1995, viii+298 pp.

[4] Minlos R.A., Mogilner A.I., “Some problems concerning spectra of lattice models”, Schrodinger Operators, Standard and Nonstandard, Proc. Conf. (Dubna, USSR, 6-10 September 1989), eds. P. Exner, P. Seba (eds.), World Scientific, Singapore, 1989, 243–257

[5] Faddeev L.D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy Matematicheskogo instituta im. V.A. Steklova AN SSSR, 69, Izd-vo Akad. nauk SSSR, Leningr. otd-nie, M.–L., 1963, 122 pp.

[6] Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I., “Tbe threshold effects for the two-particle Hamiltonians”, Commun. Math. Phys., 262 (2006), 91–115

[7] Lakaev S.N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funktsionalnyi analiz i ego prilozheniya, 27:3 (1993), 15–28

[8] Khalkhuzhaev A.M., “O chisle sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke s vzaimodeistviem na sosednikh uzlakh”, Uzbekskii matematicheskii zhurnal, 2000, no. 3, 32–39

[9] Lakaev S.N., Khalkhuzhaev A.M., “O chisle sobstvennykh znachenii dvukhchastichnogo diskretnogo operatora Shredingera”, Teoreticheskaya i matematicheskaya fizika, 158:2 (2009), 263–276

[10] Lakaev S.N., Bozorov I.N., “O chisle i mestonakhozhdenii sobstvennykh znachenii odnochastichnogo gamiltoniana na odnomernoi reshetke”, Uzbekskii matematicheskii zhurnal, 2007, no. 2, 70–80

[11] Lakaev S.N., Bozorov I.N., “Chislo svyazannykh sostoyanii odnochastichnogo gamiltoniana na trekhmernoi reshetke”, Teoreticheskaya i matematicheskaya fizika, 158:3 (2009), 425–443

[12] Muminov M.E., Khurramov A.M., “Spektralnye svoistva dvukhchastichnogo gamiltoniana na reshetke”, Teoreticheskaya i matematicheskaya fizika, 177:3 (2013), 480–493

[13] Muminov M.E., Khurramov A.M., “O kratnosti virtualnogo urovnya nizhnego kraya nepreryvnogo spektra odnogo dvukhchastichnogo gamiltoniana na reshetke”, Teoreticheskaya i matematicheskaya fizika, 180:3 (2014), 329–341

[14] Muminov M.E., Khurramov A.M., “Spektralnye svoistva dvukhchastichnogo gamiltoniana na odnomernyi reshetke”, Ufimskii matematicheskii zhurnal, 177:4 (2014), 102–110

[15] Lakaev S.N., Lakaev Sh.S., “The existence of bound states in a system of three particles in an optical lattice”, j.Phys. A: Math.Theor., 50 (2017), 335202, 17 pp.

[16] Muminov M.E., “O polozhitelnosti dvukhchastichnogo gamiltoniana na reshetke”, Teoreticheskaya i matematicheskaya fizika, 153:3 (2007), 381–387

[17] Rid M., Saimon B., Metody sovpemennoi matematicheskoi fiziki, v. 4, Analiz opepatopov, Mip, M., 1982, 428 pp.