Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is related to one of the methods of medical imaging — electrical impedance tomography (EIT). A feature of the considered two-dimensional mathematical formulation for the direct EIT problem is the use of an elliptic type equation with piecewise constant coefficients and a special integro-differential boundary condition at the contact boundary of the electrodes. For an approximate solution of the problem under consideration, a numerical method was developed using unstructured grids, the finite volume method for barycentric cells, and the Gaussian elimination method with the choice of the main element. The validation of the method was performed on a known analytical solution.
Keywords: elliptic equation with piecewise constant coefficients, finite volume method, unstructured grids, complete electrode model.
@article{VTGU_2022_78_a0,
     author = {A. A. Afanas'eva and A. V. Starchenko},
     title = {Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--21},
     year = {2022},
     number = {78},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_78_a0/}
}
TY  - JOUR
AU  - A. A. Afanas'eva
AU  - A. V. Starchenko
TI  - Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 5
EP  - 21
IS  - 78
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_78_a0/
LA  - ru
ID  - VTGU_2022_78_a0
ER  - 
%0 Journal Article
%A A. A. Afanas'eva
%A A. V. Starchenko
%T Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 5-21
%N 78
%U http://geodesic.mathdoc.fr/item/VTGU_2022_78_a0/
%G ru
%F VTGU_2022_78_a0
A. A. Afanas'eva; A. V. Starchenko. Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 78 (2022), pp. 5-21. http://geodesic.mathdoc.fr/item/VTGU_2022_78_a0/

[1] Cheney M., Isaacson D., Newell J.C., “Electrical Impedance Tomography”, Society for Industrial and Applied Mathematics, 41:1 (1999), 85–101

[2] Saulnier G.J., Blue R.S., Newell J.C., Isaacson D., Edic P.M., “Electrical impedance tomogra phy”, IEEE Signal Processing Magazine, 18:6 (2001), 31–43 | DOI

[3] Pekker Ya.S., Brazovskii K.S., Usov V.Yu. i dr., Elektroimpedansnaya tomografiya, Izd-vo NTL, Tomsk, 2004, 192 pp.

[4] Borcea L., “Electric Impedance Tomography. Topical Review”, Inverse Problems, 18 (2002), R99-R136

[5] Dong G., Zou J., Bayford R.H., Xinshan M., Shangkai G., Weili Y., Manling G., “The comparison between FVM and FEM for EIT forward problem”, IEEE Trans. Magnetics, 41:5 (2005), 1468–1471 | DOI

[6] Sherina E.S., Starchenko A.V., “Raznostnye skhemy na osnove metoda konechnykh ob'emov dlya zadachi elektroimpedansnoi tomografii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 3 (29), 25–38

[7] Li J., Yuan Y., “Numerical simulation and analysis of generalized difference method on triangu lar networks for electrical impedance tomography”, Applied Mathematical Modelling, 2009, no. 33, 2175–2186 | DOI

[8] Darbas M., Heleine J., Mendoza R., Velasco A.C., “Sensitivity analysis of the complete elec trode model for electrical impedance tomography”, AIMS Mathematics, 2021, no. 6 (7), 7333–7366 | DOI

[9] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, 5-e izd., ispr., Nauka, M., 1994, 528 pp.

[10] Somersalo E., Cheney M., Isaacson D., “Existence and uniqueness for electrode models for electric current computed tomography”, SIAM J. Appl. Math., 52 (1992), 1023–1040 | DOI

[11] Tikhonov A.N., Samarskii A.A., Metody matematicheskoi fiziki, ucheb. posobie dlya vuzov, 5-e izd., stereotip., Nauka, M., 1977, 735 pp.

[12] Krylov V.I., Bobkov V.V., Monastyrnyi P.I., Vychislitelnye metody, v. 2, eds. E.Yu. Khodan, E.V. Shikin, Nauka, M., 1977, 400 pp.

[13] Afanaseva A.A., Starchenko A.V., “Chislennoe reshenie zadachi elektroimpedansnoi tomografii”, Vse grani matematiki i mekhaniki, ed. L.V. Genze, Tomsk, 2021, 17–29

[14] Starchenko A.V., Sednev M.A., Panko S.V., “Priblizhennoe analiticheskoe reshenie pryamoi zadachi elektroimpedansnoi tomografii v neodnorodnom kruge s uchetom soprotivleniya elektrodov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 19–29 | DOI