Determination of the elastic fields induced by body forces in transtropic bodies of revolution
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 86-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a method for determining the stress-strain state of transversely isotropic bodies of revolution under the action of non-axisymmetric stationary body forces. This problem solution involves the use of boundary state method definitions. The basis of the space of internal states is formed using the fundamental polynomials. The polynomial is placed in any position of a displacement vector of the plane auxiliary state; the spatial state is determined by transition formulas. A set of such states forms a finite-dimensional basis, in which after orthogonalization, the desired state is expanded into Fourier series with the same coefficients. The series coefficients are scalar products of the vectors of given and basic body forces. Finally, the determination of the elastic state is reduced to solving quadratures. The solutions to problems of elasticity theory for a transversely isotropic circular cylinder are analyzed in terms of the action of body forces given by various cyclic laws (sine and cosine). Recommendations are given for constructing the basis of internal states depending on the type of the function of the given body forces. The analysis of the series convergence and the estimation of the solution accuracy are given in a graphical form.
Keywords: boundary state method, transversely isotropic materials, body forces, state space, non-axisymmetric deformation.
@article{VTGU_2022_77_a6,
     author = {D. A. Ivanychev},
     title = {Determination of the elastic fields induced by body forces in transtropic bodies of revolution},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {86--100},
     year = {2022},
     number = {77},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a6/}
}
TY  - JOUR
AU  - D. A. Ivanychev
TI  - Determination of the elastic fields induced by body forces in transtropic bodies of revolution
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 86
EP  - 100
IS  - 77
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a6/
LA  - ru
ID  - VTGU_2022_77_a6
ER  - 
%0 Journal Article
%A D. A. Ivanychev
%T Determination of the elastic fields induced by body forces in transtropic bodies of revolution
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 86-100
%N 77
%U http://geodesic.mathdoc.fr/item/VTGU_2022_77_a6/
%G ru
%F VTGU_2022_77_a6
D. A. Ivanychev. Determination of the elastic fields induced by body forces in transtropic bodies of revolution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 86-100. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a6/

[1] Vestyak V.A., Tarlakovskii D.V., “Nestatsionarnoe osesimmetrichnoe deformirovanie uprugoi tolstostennoi sfery pod deistviem ob'emnykh sil”, Prikladnaya mekhanika i tekhnicheskaya fizika, 56:6 (2015), 59–69 | MR

[2] Fukalov A.A., “Zadachi ob uprugom ravnovesii sostavnykh tolstostennykh transversalno izotropnykh sfer, nakhodyaschikhsya pod deistviem massovykh sil i vnutrennego davleniya, i ikh prilozheniya”, KhI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan, 20-24 avgusta 2015), Kazan, 2015, 3951–3953

[3] Zaitsev A.V., Fukalov A.A., “Tochnye analiticheskie resheniya zadach o ravnovesii uprugikh anizotropnykh tel s tsentralnoi i osevoi simmetriei, nakhodyaschikhsya v pole gravitatsionnykh sil, i ikh prilozheniya k zadacham geomekhaniki”, Matematicheskoe modelirovanie v estestvennykh naukakh, 1 (2015), 141–144

[4] Agakhanov E.K., “O razvitii kompleksnykh metodov resheniya zadach mekhaniki deformiruemogo tverdogo tela”, Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2013, no. 2 (29), 39–45

[5] Sharafutdinov G.Z., “Funktsii kompleksnogo peremennogo v zadachakh teorii uprugosti pri nalichii massovykh sil”, Prikladnaya matematika i mekhanika, 73:1 (2009), 69–87 | MR

[6] Struzhanov V.V., “O reshenii kraevykh zadach teorii uprugosti metodom ortogonalnykh proektsii”, Matematicheskoe modelirovanie sistem i protsessov, 2004, no. 12, 89–100

[7] Kuzmenko V.I., Kuzmenko N.V., Levina L.V., Penkov V.B., “Sposob resheniya zadach izotropnoi teorii uprugosti s ob'emnymi silami v polinomialnom predstavlenii”, Prikladnaya matematika i mekhanika, 83:1 (2019), 84–94 | DOI

[8] Penkov V.B., Levina L.V., Novikova O.S., “Analiticheskoe reshenie zadach elastostatiki odnosvyaznogo tela, nagruzhennogo nekonservativnymi ob'emnymi silami. Teoreticheskoe i algoritmicheskoe obespechenie”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiziko-matematicheskie nauki, 24:1 (2020), 56–73 | DOI

[9] Ivanychev D.A., “Metod granichnykh sostoyanii v reshenii pervoi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 66, 96–111 | DOI | MR

[10] Ivanychev D.A., “Metod granichnykh sostoyanii v reshenii vtoroi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 45–60 | DOI | MR

[11] Ivanychev D.A., “Reshenie kontaktnoi zadachi teorii uprugosti dlya anizotropnykh tel vrascheniya s massovymi silami”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 2, 49–62 | DOI

[12] Ivanychev D.A., Levina E.Yu., “Solution of thermo elasticity problems for solids of revolution with transversal isotropic feature and a body force”, Journal of Physics: Conference Series, 1348 (2019), 012058, 15 pp. | DOI

[13] Ivanychev D.A., “The method of boundary states in solving problems of thermoelasticity in the presence of mass forces”, Proceedings of the 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, 2019, 83–87 | DOI | MR

[14] Aleksandrov A.Ya., Solovev Yu.I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, Glav. red. fiz.-mat. lit., M., 1978, 464 pp.

[15] Lure A.I., Prostranstvennye zadachi teorii uprugosti, Gosizdat tekhn.-teoret. lit., M., 1955, 491 pp. | MR

[16] Penkov V.B., Penkov V.V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 115–137 | MR

[17] Satalkina L.V., “Naraschivanie bazisa prostranstva sostoyanii pri zhestkikh ogranicheniyakh k energoemkosti vychislenii”, Sbornik tezisov dokladov nauchnoi konferentsii studentov i aspirantov Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, Lipetsk, 2007, 130–131

[18] Lekhnitskii S.G., Teoriya uprugosti anizotropnogo tela, 2-e izd., Nauka, M., 1977, 416 pp.

[19] Levina L.V., Novikova O.S., Penkov V.B., “Polnoparametricheskoe reshenie zadachi teorii uprugosti odnosvyaznogo ogranichennogo tela”, Vestnik Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 2 (28), 16–24 | MR