Relative dynamics of shells of a bifullerene complex
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 54-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, mathematical modeling of relative dynamics of a bifullerene complex is carried out on the assumption that the inner shell does not form covalent bonds with an outer carbon skeleton. This fact enables free angular movements of the inner shell. In particular, the directed rotation of the inner fullerene can be provided. This, in turn, allows for accumulating of a significant fraction of kinetic energy at internal degrees of freedom of the complex under consideration. In this case, the direction of rotations is not related to temperature; the outer shell of the complex restrains the transfer of the stored energy into thermal vibrations. Therefore, calculations are performed to estimate the stability of the rotational motion of an encapsulated fullerene relative to translational displacements of the outer shell. The calculations are carried out using a separate description of the dynamics of closed carbon molecules in terms of translational and rotational displacements. Translational displacements are determined using the equations of motion for the centers of mass of molecules. Rotational displacements are found on the basis of the dynamic Euler equations. The power centers in the considered framework structures of the molecules are carbon atoms. Therefore, the strength characteristics of intermolecular interactions are obtained in accordance with an atom-atom approach. In this case, the interaction parameters of individual atoms correspond to the case when these atoms are located in a structure of the surface carbon crystal.
Keywords: numerical modeling, molecular dynamics, fullerenes.
@article{VTGU_2022_77_a4,
     author = {M. A. Bubenchikov and D. V. Mamontov and A. S. Chelnokova},
     title = {Relative dynamics of shells of a bifullerene complex},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {54--67},
     year = {2022},
     number = {77},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a4/}
}
TY  - JOUR
AU  - M. A. Bubenchikov
AU  - D. V. Mamontov
AU  - A. S. Chelnokova
TI  - Relative dynamics of shells of a bifullerene complex
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 54
EP  - 67
IS  - 77
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a4/
LA  - ru
ID  - VTGU_2022_77_a4
ER  - 
%0 Journal Article
%A M. A. Bubenchikov
%A D. V. Mamontov
%A A. S. Chelnokova
%T Relative dynamics of shells of a bifullerene complex
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 54-67
%N 77
%U http://geodesic.mathdoc.fr/item/VTGU_2022_77_a4/
%G ru
%F VTGU_2022_77_a4
M. A. Bubenchikov; D. V. Mamontov; A. S. Chelnokova. Relative dynamics of shells of a bifullerene complex. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 54-67. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a4/

[1] Whitener E.K.J., “Theoretical Studies of CH4 Inside an Open-Cage Fullerene: Transla tion-Rotation Coupling and Thermodynamic Effects”, j. Phys. Chem., 114:45 (2010), 12075–12082 | DOI

[2] Whitener E.K.J., Cross R.J., Saunders M., Iwamatsu Shoichi, Murata S., Nagase S., “Methane in open-cage [60]fullene”, Journal of the American Chemical Society, 131:18 (2009), 6338–6339 | DOI

[3] Huang T., Zhao J., Feng M., Dunsch L. et al., “A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage”, Chemical Physics Letters, 552:12 (2012), 1–12 | DOI

[4] Lima R.F., Brandao J., Marcio M., Moraes F., “Effects of rotation in the energy spectrum of C60”, The Europian Physics Journal D, 68:94 (2014) | DOI

[5] Konarev D.V., Lyubovskaya R.N., Khasanov S.S., “Transition from free rotation of C70 mole cules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: (FeIHTPP)2OxC70”, Journal of Porphyrins and Phthalocyanines, 14:4 (2010), 293–297 | DOI

[6] Warner J.H., Ito Y., Zaka M., Ge L., Akachi T., Okimoto H., Porfyrakis K., Watt A.A.R., Shinohara H., Briggs G.A.D., “Rotating Fullerene Chains in Carbon Nanopeapods”, Nano Letters, 8:8 (2008), 2328–2335 | DOI

[7] Glukhova O.E., Zhbanov A.I., Rezkov A.G., “Rotation of the inner shell in a C20@C80 nanopar ticle”, Physics of the Solid State, 47:2 (2005), 390–396 | DOI

[8] Glukhova O.E., “Theoretical study of the structure of the C60@C450 nanoparticle and relative motion of the encapsulated C60 molecule”, j. Struct. Chem., 48 (2007), S141–S146 | DOI

[9] Dunn J.L., Hands I.D., Bates C.A., “Pseudorotation in fullerene anions”, Journal of Molecular Structure, 838:1-3 (2006), 60–65 | DOI

[10] Yangs S., Wey T. et al., “Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C-C Bond Rotation”, Chemistry, 21:43 (2015), 15138–15141 | DOI

[11] MacKenzie R.C.I., Frost J.M., Nelson J., “A numerical study of mobility in thin films of fullerene derivatives”, Phys. Chem., 132 (2010), 064904 | DOI

[12] Herman R.M., Lewis J.C., “Vibration-rotation-translation spectrum of molecular hydrogen in fullerite lattices around 80 K”, Physica B: Condensed Matter, 404:8-11 (2009), 15811584 pp. | DOI

[13] Lynden-Bell R.M., Michael K.H., “Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals”, Reviews of Modern Physics, 66:3 (1994), 721 | DOI

[14] Griadun V.I., “Vacancies in nanotubes and fullerenes”, Proceedings of the 16th International Crimean Microwave and Telecommunication Technology (Sevastopol, 11-15 September 2006), IEEE, 2006, 669–670 | DOI

[15] Jaron-Becker A., Becker A., Faisal F.H.M., “Saturated Ionization of Fullerenes in Intense Laser Fields”, Phys. Rev. Letters, 96 (2006), 143006 | DOI

[16] Slanina Z., Zhao X., “Model narrow nanotubes related to C36, C32 and C20: Initial computational structural sampling”, Materials Science and Engineering B, 96:2 (2002), 164168 | DOI

[17] Bousige C., Verberck B. et al., “Lattice dynamics of a rotor-stator molecular crystals: Fullerene-cubane C60 C8H8”, Phys. Rev. B, 82:19 (2010), 195413 | DOI

[18] Hosseini-Hashemi S., Sepahi-Boroujeni A., Sepahi-Boroujeni S., “Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene”, Applied Surface Science, 437 (2018), 366–374 | DOI

[19] Yang L., Chen J., Dong J., “Stability of single-wall carbon nanotube tori”, Physica Status Solidi (B), 241:6 (2004), 1269–1273 | DOI

[20] Ruiz A., Hernandez-Rojas J., Breton J., Gomez Llorente J.M., “Low-temperature dynamics and spectroscopy in exohedral rare-gas C60 fullerene complexes”, j. Phys. Chem., 114 (2001) | DOI

[21] Bozhko S.I., Levchenko E.A., Semenov V.N., Bulatov M.F., Shvets I.V., “Rotation dynamics of C60 molecules in a monolayer fullerene film on the WO2/W(110) surface near the rotational phase transition”, Journal of Experimental and Theoretical Physics, 120:5 (2015), 831–837 | DOI

[22] Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V., Lun-Fu A.V., “MD-simulation of fullerene rotations in molecular crystall fullerite”, Crystals, 9:10 (2019), 496 | DOI

[23] Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V., Kaparulin D.S., Lun-Fu A.V., “Dynamic state of columnar structures formed on the basis of carbon nanotori”, Fullerenes, Nanotubes and Carbon Nanostructures, 29:10 (2021), 825–831 | DOI

[24] Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V., “The dynamic state of a pseudocrystalline structure of B42 molecules”, Crystals, 10:6 (2020), 510 | DOI

[25] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v 10 t., v. 1, Mekhanika, Nauka, M., 1988, 216 pp. | MR