Analysis of some methods of integration of cells in a mechanical metamaterial
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 27-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the influence of integration of unit cells on the mechanical behavior of the sample made of mechanical tetrachiral metamaterial is studied by using mathematical modeling. A chiral structure of the cells provides unusual mechanical behavior of the metamaterial, namely, twisting under uniaxial loading. Two methods of integration of unit cells in the metamaterial are discussed: joining and overlapping. The advantages and disadvantages of each method are described. It has been found that in one of the cases, the rotation of the system of two cells is carried out around the center of mass, which favorably affects the stability of the system, but decreases the rotation angle. In another case, the absence of one of the faces leads to the rotation which is not relative to the center of mass and results in the asymmetric strain figure and instability of the system. Such instability is caused by disproportionate arrangement of the cells in the plane, which has been shown using the examples of the systems with two and nine cells. For the system of nine unit cells, both methods of integration lead to a symmetric rotation about two perpendicular axes. Further research of this topic is supposed to allow one to create metamaterials and structures with programmable mechanical behavior.
Keywords: mechanical metamaterial, chirality, twist, integration of cells, numerical modeling.
@article{VTGU_2022_77_a2,
     author = {L. R. Akhmetshin and I. Yu. Smolin},
     title = {Analysis of some methods of integration of cells in a mechanical metamaterial},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {27--37},
     year = {2022},
     number = {77},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a2/}
}
TY  - JOUR
AU  - L. R. Akhmetshin
AU  - I. Yu. Smolin
TI  - Analysis of some methods of integration of cells in a mechanical metamaterial
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 27
EP  - 37
IS  - 77
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a2/
LA  - ru
ID  - VTGU_2022_77_a2
ER  - 
%0 Journal Article
%A L. R. Akhmetshin
%A I. Yu. Smolin
%T Analysis of some methods of integration of cells in a mechanical metamaterial
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 27-37
%N 77
%U http://geodesic.mathdoc.fr/item/VTGU_2022_77_a2/
%G ru
%F VTGU_2022_77_a2
L. R. Akhmetshin; I. Yu. Smolin. Analysis of some methods of integration of cells in a mechanical metamaterial. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 27-37. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a2/

[1] Yu X., Zhou J., Liang H., Jiang Zh., Wu L., “Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review”, Progress in Materials Science, 94 (2018), 114–173 | DOI

[2] Cummer S.A., Christensen J., Alu A., “Controlling sound with acoustic metamaterials”, Nature Reviews Materials, 1 (2016), 16001. | DOI

[3] Grima J.N., Gatt R., Farrugia P.-S., “On the properties of auxetic meta-tetrachiral structures”, Physica Status Solidi (B), 245 (2008), 511–520 | DOI

[4] Prall D., Lakes R.S., “Properties of a chiral honeycomb with a Poisson's ratio of -1”, Intemational Journal of Mechanical Sciences, 39:3 (1997), 305–314 | DOI

[5] Frenzel T., Kadic M., Wegener M., “Three-dimensional mechanical metamaterials with a twist”, Science, 358 (2017), 6366, 1072–1074 | DOI

[6] Schaedler T., Jacobsen A., Torrents A., Sorensen A., Lian J., Greer J., Valdevit L., Carter W.B., “Ultralight metallic microlattices”, Science, 334 (2011), 6058, 962–965 | DOI

[7] Tan T., Yan Zh., Zou H., Ma K., Liu F., Zhao L., Peng Zh., Zhang W., “Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things”, Applied Energy, 254 (2019), 113717 | DOI

[8] Bhullar S.K., Lala N.L., Ramkrishna S., “Smart biomaterials - a review”, Review on Advanced, Materials Science, 40:3 (2015), 303–314

[9] Kweun J.M., Lee H.J., Oh J.H., Seung H.M., Kim Y.Y., “Transmodal Fabry-Perot Resonance: Theory and Realization with Elastic Metamaterials”, Physical Review Letters, 118 (2017), 205901, 6 pp. | DOI

[10] Akhmetshin L.R., Smolin I.Yu., “Influence of unit cell parameters of tetrachiral mechanical metamaterial on its effective properties”, Nanoscience and Technology: An International Journal, 11:3 (2020), 265–273 | DOI | MR

[11] Akhmetshin L.R., Smolin I.Yu., “The localization of deformations in mechanical metamaterial with a twist. Numerical investigation”, AIP Conference Proceedings, 2310 (2020), 020008 | DOI

[12] Akhmetshin L.R., Iokhim K. V., “Analytical and Numerical Analysis of the Deformation Behavior of Tetrachiral Metamaterial”, AIP Conference Proceedings, 2310 (2020), 20006 | DOI

[13] Fu M.-H., Zheng B.B., Li W.-H., “A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters”, Composite Structures, 176 (2017), 442–448 | DOI

[14] Bonfanti S., Guerra R., Zaiser M., Zapperi S., “Digital strategies for structured and architected materials design”, APL Materials, 9 (2021), 020904 | DOI