About $k$-nil-good formal matrix rings
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 17-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2018, Abdolyusefi, Ashrafi, and Chen gave a definition of a $2$-nil-good ring element in their work, generalizing the notion of a graceful ring element introduced two years earlier by Kalugeryan and Lam, as well as the definition of a $2$-nil-good ring. In the same work, it was shown that the Morita context ring, i.e. a formal matrix ring of the second order is $2$-nil-good if the rings over which it is considered are themselves $2$-nil-good. In this paper, we generalize further, defining $k$-nil-good elements and $k$-nil-good rings, and state a condition under which a formal matrix ring of an arbitrary finite order is $k$-nil-good.
Keywords: ring, $k$-nil-good ring, formal matrix ring
Mots-clés : Morita context.
@article{VTGU_2022_77_a1,
     author = {Ts. D. Norbosambuev and E. A. Timoshenko},
     title = {About $k$-nil-good formal matrix rings},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--26},
     year = {2022},
     number = {77},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a1/}
}
TY  - JOUR
AU  - Ts. D. Norbosambuev
AU  - E. A. Timoshenko
TI  - About $k$-nil-good formal matrix rings
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 17
EP  - 26
IS  - 77
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a1/
LA  - ru
ID  - VTGU_2022_77_a1
ER  - 
%0 Journal Article
%A Ts. D. Norbosambuev
%A E. A. Timoshenko
%T About $k$-nil-good formal matrix rings
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 17-26
%N 77
%U http://geodesic.mathdoc.fr/item/VTGU_2022_77_a1/
%G ru
%F VTGU_2022_77_a1
Ts. D. Norbosambuev; E. A. Timoshenko. About $k$-nil-good formal matrix rings. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 17-26. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a1/

[1] Krylov P.A., “Ob izomorfizme kolets obobschennykh matrits”, Algebra i logika, 47:4 (2008), 456–463 | MR

[2] Krylov P.A., Tuganbaev A.A., “Formalnye matritsy i ikh opredeliteli”, Fundamentalnaya i prikladnaya matematika, 19:1 (2014), 65–119

[3] Krylov P.A., Tuganbaev A.A., Koltsa formalnykh matrits i moduli nad nimi, MTsNMO, M., 2017 | MR

[4] Krylov P.A., Norbosambuev Ts.D., “Avtomorfizmy algebr formalnykh matrits”, Sibirskii matematicheskii zhurnal, 59:5 (2018), 1116–1127 | DOI | MR

[5] Krylov P.A., Norbosambuev Ts.D., “Gruppa avtomorfizmov odnogo klassa algebr formalnykh matrits”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 53, 16–21 | DOI

[6] Loustaunau P., Shapiro J., “Morita contexts”, Non-Commutative Ring Theory, Lecture Notes in Mathematics, 1448, Springer, 1990, 80–92 | DOI | MR

[7] Norbosambuev Ts.D., “O summakh diagonalnykh i obratimykh obobschennykh matrits”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 4 (36), 34–40 | DOI

[8] Norbosambuev Ts.D., “2-khoroshie diagonalnye formalnye matritsy nad koltsom tselykh chisel”, Vseros. molodezhnaya nauch. konf. «Vse grani matematiki i mekhaniki», sb. st., Izd. dom TGU, Tomsk, 2016, 6–12

[9] Norbosambuev Ts.D., “Rang formalnoi matritsy. Sistema formalnykh lineinykh uravnenii. Deliteli nulya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 52, 5–12 | DOI | MR

[10] Morita K., “Duality for modules and its applications to the theory of rings with minimum condition”, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6 (1958), 83–142 | MR

[11] Vamos P., “2-good rings”, Quart. J. Math., 56:3 (2005), 417–430 | DOI | MR

[12] Srivastava A.K., “A survey of rings generated by units”, Ann. Fac. Sci. Toulouse. Math., 19 (2010), 203–213 | DOI | MR

[13] Henriksen M., “Two classes of rings generated by their units”, j. Algebra, 31:1 (1974), 182–193 | DOI | MR

[14] Krylov P.A., “Summy avtomorfizmov abelevykh grupp i radikal Dzhekobsona koltsa endomorfizmov”, Izvestiya vuzov. Matematika, 1976, no. 4, 56–66

[15] Nicholson W.K., “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR

[16] Sorokin K.S., “Vpolne razlozhimye abelevy gruppy s chistymi koltsami endomorfizmov”, Fundamentalnaya i prikladnaya matematika, 17:8 (2011/2012), 105–108

[17] Sorokin K.S., “Samomalye SP-gruppy s chistymi koltsami endomorfizmov”, Fundamentalnaya i prikladnaya matematika, 20:5 (2015), 141–148

[18] Xiao G., Tong W., “n-clean rings and weakly unit stable range rings”, Comm. Algebra, 33:5 (2005), 1501–1517 | DOI | MR

[19] Diesl A.J., “Nil clean rings”, j. Algebra, 383 (2013), 197–211 | DOI | MR

[20] Calugareanu G., Lam T.Y., “Fine rings: A new class of simple rings”, j. Algebra Appl., 15:9 (2016), 1650173 | DOI | MR

[21] Danchev P., “Nil-good unital rings”, Int. J. Algebra, 10:5 (2016), 239–252 | DOI

[22] Abdolyousef M.S., Ashraf N., Chen H., “On 2-nil-good rings”, j. Algebra Appl., 17:6 (2018), 1850110 | DOI | MR

[23] Goldsmith B., Meehan C., Wallutis S.L., “On unit sum numbers of rational groups”, Rocky Mountain J. Math., 32:4 (2002), 1431–1450 | DOI | MR