Conformal mapping of a half-plane onto a periodic polygon of half-plane type
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider countable polygons - simply connected half-plane-type domains with translation symmetry along the real axis and a boundary consisting of line segments. The method for determining the parameters in the Christoffel-Schwartz integral extends to the case of a conformal mapping of a half-plane onto a counting-gon.
Keywords: conformal mapping, periodic polygon, transfer symmetry, Schwarz-Christoffel integral.
@article{VTGU_2022_77_a0,
     author = {I. A. Kolesnikov},
     title = {Conformal mapping of a half-plane onto a periodic polygon of half-plane type},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--16},
     year = {2022},
     number = {77},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Conformal mapping of a half-plane onto a periodic polygon of half-plane type
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 5
EP  - 16
IS  - 77
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/
LA  - ru
ID  - VTGU_2022_77_a0
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Conformal mapping of a half-plane onto a periodic polygon of half-plane type
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 5-16
%N 77
%U http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/
%G ru
%F VTGU_2022_77_a0
I. A. Kolesnikov. Conformal mapping of a half-plane onto a periodic polygon of half-plane type. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 5-16. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/

[1] Driscoll T.A., Trefethen L.N., Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, 2002 | MR

[2] Aleksandrov I.A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriei perenosa”, Izvestiya vuzov. Matematika, 1999, no. 6 (445), 15–18

[3] Kopanev S.A., Kopaneva L.S., “Formula tipa formuly Kristoffelya-Shvartsa dlya schetnougolnika”, Vestnik Tomskogo gosudarstvennogo universiteta, 2003, no. 280, 52–54

[4] Kolesnikov I.A., Kopaneva L.S., “Konformnoe otobrazhenie na schetnougolnik s dvoinoi simmetriei”, Izvestiya vuzov. Matematika, 2014, no. 12, 37–47

[5] Kolesnikov I.A., “Otobrazhenie na krugovoi schetnougolnik s simmetriei perenosa”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 2 (22), 33–43

[6] Floryan J.M., “Schwarz-Christoffel methods for conformal mapping of regions with a periodic boundary”, j. Comput. and Applied Math., 1993, no. 46, 77–102 | DOI | MR

[7] Hussenpflug W.S., “Elliptic integrals and the Schwarz-Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR

[8] Aleksandrov I.A., Kopaneva L.S., “Levnerovskie semeistva otobrazhenii poluploskosti na oblasti s simmetriei perenosa”, Vestnik Tomskogo gosudarstvennogo universiteta, 2004, no. 284, 5–7

[9] Kolesnikov I.A., “Opredelenie aktsessornykh parametrov dlya otobrazheniya na schetnougolnik”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 2 (28), 18–28

[10] Kolesnikov I.A., “Opredelenie aktsessornykh parametrov konformnykh otobrazhenii iz verkhnei poluploskosti na pryamolineinye schetnougolniki s dvoinoi simmetriei i krugovye schetnougolniki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 42–60 | DOI

[11] Neviere M., Cadilhac M., Petit R., “Applications of conformal mappings to the diffraction of electromagnetic waves by a grating”, IEEE Transactions on Antennas and Propagation, 21:1 (1973), 37–46 | DOI | MR

[12] Tsarin Yu.A., “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] Gysen B.L.J., Lomonova E.A., Paulides J.J.H., Vandenput A.J.A., “Analytical and Numerical Techniques for Solving Laplace and Poisson Equations in a Tubular Permanent Magnet Actuator: Part II. Schwarz-Christoffel Mapping”, IEEE Transactions on Magnetics, 44:7 (2008), 1761–1767 | DOI

[14] Leontiou T., Kotsonis M., Fyrillas M.M., “Optimum isothermal surfaces that maximize heat transfer”, International Journal of Heat and Mass Transfer, 63 (2013), 13–19 | DOI

[15] Aouiche A., Djellid A., Bouttout F., “Fuzzy neuroconformal analysis of multilayer elliptical cylindrical and asymmetrical coplanar striplines”, Int. J. Electron.Commun. (AEU), 69 (2015), 1151–1166 | DOI

[16] Kolesnikov I.A., “Odnoparametricheskii metod opredeleniya parametrov v integrale Kristoffelya-Shvartsa”, Sibirskii matematicheskii zhurnal, 62:4 (2021), 784–802 | DOI