@article{VTGU_2022_77_a0,
author = {I. A. Kolesnikov},
title = {Conformal mapping of a half-plane onto a periodic polygon of half-plane type},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--16},
year = {2022},
number = {77},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/}
}
TY - JOUR AU - I. A. Kolesnikov TI - Conformal mapping of a half-plane onto a periodic polygon of half-plane type JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 5 EP - 16 IS - 77 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/ LA - ru ID - VTGU_2022_77_a0 ER -
I. A. Kolesnikov. Conformal mapping of a half-plane onto a periodic polygon of half-plane type. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 77 (2022), pp. 5-16. http://geodesic.mathdoc.fr/item/VTGU_2022_77_a0/
[1] Driscoll T.A., Trefethen L.N., Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, 2002 | MR
[2] Aleksandrov I.A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriei perenosa”, Izvestiya vuzov. Matematika, 1999, no. 6 (445), 15–18
[3] Kopanev S.A., Kopaneva L.S., “Formula tipa formuly Kristoffelya-Shvartsa dlya schetnougolnika”, Vestnik Tomskogo gosudarstvennogo universiteta, 2003, no. 280, 52–54
[4] Kolesnikov I.A., Kopaneva L.S., “Konformnoe otobrazhenie na schetnougolnik s dvoinoi simmetriei”, Izvestiya vuzov. Matematika, 2014, no. 12, 37–47
[5] Kolesnikov I.A., “Otobrazhenie na krugovoi schetnougolnik s simmetriei perenosa”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 2 (22), 33–43
[6] Floryan J.M., “Schwarz-Christoffel methods for conformal mapping of regions with a periodic boundary”, j. Comput. and Applied Math., 1993, no. 46, 77–102 | DOI | MR
[7] Hussenpflug W.S., “Elliptic integrals and the Schwarz-Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR
[8] Aleksandrov I.A., Kopaneva L.S., “Levnerovskie semeistva otobrazhenii poluploskosti na oblasti s simmetriei perenosa”, Vestnik Tomskogo gosudarstvennogo universiteta, 2004, no. 284, 5–7
[9] Kolesnikov I.A., “Opredelenie aktsessornykh parametrov dlya otobrazheniya na schetnougolnik”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 2 (28), 18–28
[10] Kolesnikov I.A., “Opredelenie aktsessornykh parametrov konformnykh otobrazhenii iz verkhnei poluploskosti na pryamolineinye schetnougolniki s dvoinoi simmetriei i krugovye schetnougolniki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 42–60 | DOI
[11] Neviere M., Cadilhac M., Petit R., “Applications of conformal mappings to the diffraction of electromagnetic waves by a grating”, IEEE Transactions on Antennas and Propagation, 21:1 (1973), 37–46 | DOI | MR
[12] Tsarin Yu.A., “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[13] Gysen B.L.J., Lomonova E.A., Paulides J.J.H., Vandenput A.J.A., “Analytical and Numerical Techniques for Solving Laplace and Poisson Equations in a Tubular Permanent Magnet Actuator: Part II. Schwarz-Christoffel Mapping”, IEEE Transactions on Magnetics, 44:7 (2008), 1761–1767 | DOI
[14] Leontiou T., Kotsonis M., Fyrillas M.M., “Optimum isothermal surfaces that maximize heat transfer”, International Journal of Heat and Mass Transfer, 63 (2013), 13–19 | DOI
[15] Aouiche A., Djellid A., Bouttout F., “Fuzzy neuroconformal analysis of multilayer elliptical cylindrical and asymmetrical coplanar striplines”, Int. J. Electron.Commun. (AEU), 69 (2015), 1151–1166 | DOI
[16] Kolesnikov I.A., “Odnoparametricheskii metod opredeleniya parametrov v integrale Kristoffelya-Shvartsa”, Sibirskii matematicheskii zhurnal, 62:4 (2021), 784–802 | DOI