Theoretical and experimental investigation of fires in large fuel tanks and creation of an innovative technology of their extinguishment
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 131-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fundamental inefficiency of existing foam fire systems extinguishing tanks with oil and petroleum products having a volume of 5000 m$^{3}$ or more is shown by methods of mathematical modeling. The required foam supply intensity and foam supply rate allowing effective fire suppression in large tanks with a volume of up to 20000 m$^{3}$ are theoretically predicted. On this basis of theoretical conclusions, a new method of foam fire extinguishing in large fuel tanks has been developed. To obtain the required intensities and supply rates, fire extinguishing foam is formed in a special container with the use of solid-fuel gas generators. The theoretical predictions were confirmed in 21 full-scale successful experiments, in which fire suppresion system based on the new method was able to extinguish a fully developed gasoline fire in tanks with a volume of 5000 m$^{3}$ and 20 000 m$^{3}$ just for 30-90 seconds. The required amount of the foaming agent to extinguish a fire in a 20 000 m$^{3}$ tank is only 450 liters, which is at least 100 times less than for traditional foam fire fighting Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.
Keywords: foam, fire extinguishing, large fuel tanks.
@article{VTGU_2022_76_a9,
     author = {N. P. Kopylov and S. N. Kopylov and A. V. Karpov and D. V. Fedotkin and E. Yu. Sushkina},
     title = {Theoretical and experimental investigation of fires in large fuel tanks and creation of an innovative technology of their extinguishment},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {131--149},
     year = {2022},
     number = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a9/}
}
TY  - JOUR
AU  - N. P. Kopylov
AU  - S. N. Kopylov
AU  - A. V. Karpov
AU  - D. V. Fedotkin
AU  - E. Yu. Sushkina
TI  - Theoretical and experimental investigation of fires in large fuel tanks and creation of an innovative technology of their extinguishment
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 131
EP  - 149
IS  - 76
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a9/
LA  - ru
ID  - VTGU_2022_76_a9
ER  - 
%0 Journal Article
%A N. P. Kopylov
%A S. N. Kopylov
%A A. V. Karpov
%A D. V. Fedotkin
%A E. Yu. Sushkina
%T Theoretical and experimental investigation of fires in large fuel tanks and creation of an innovative technology of their extinguishment
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 131-149
%N 76
%U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a9/
%G ru
%F VTGU_2022_76_a9
N. P. Kopylov; S. N. Kopylov; A. V. Karpov; D. V. Fedotkin; E. Yu. Sushkina. Theoretical and experimental investigation of fires in large fuel tanks and creation of an innovative technology of their extinguishment. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 131-149. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a9/

[1] The Buncefield Incident 11 December, 2005, The Final Report of the Major Incident Investi gation Board. V. 1. Buncefield Major Incident Investigation Board, 2008

[2] Fire and Explosion at Konda Oil Depot, 2018 (accessed: 19.12.2018) http://www.travmatizma.net/

[3] Fire at fuel depot near Kiev not supressed, new explosions occur, 2018 (accessed: 19.12.2018) http://www.eadaily.com/

[4] Fire at oil refinery kills 4 in Nizhny Novgorod Region (data obrascheniya: 19.12.2018) http://www.interfax.com/

[5] Bezrodnyi I.F., Giletich A.N., Merkulov V.A. i dr., Tushenie nefti i nefteproduktov, posobie, VNIIPO, M., 1996, 216 pp.

[6] SP 12.13130.2009. Opredelenie kategorii pomeschenii, zdanii i naruzhnykh ustanovok po pozharovzryvoopasnosti (data obrascheniya: 19.12.2018) http://www.docs.cntd.ru/

[7] Goryachev S.A., Molchanov S.V., Nazarov V.P. i dr., Pozharnaya bezopasnost tekhnologicheskikh protsessov, uchebnik, v. 2, Analiz pozharnoi opasnosti i zaschity tekhnologicheskogo oborudovaniya, eds. V.P. Nazarov, V.V. Rubtsov, Akad. GPS MChS Rossii, M., 2007, 221 pp.

[8] Welch S., Rubini P., SOFIE, Simulations of Fires in Enclosures : User Guide, Cranfield University, South England, UK, 1996

[9] Launder B.E., Spalding D.B., “The Numerical Computation of Turbulent Flow”, Comp. Meth. Appl. Mech. Eng., 3 (1974), 269–289 | DOI

[10] Hossain M.S., Rodi W., “A Turbulence Model for Buoyant Flows and Its Application for Vertical Buoyant Jets”, Turbulent Buoyant Jets and Plums, HMT Series, 6, Oxford, 1982, 121–172 | MR

[11] Cox G., Combustion Fundamentals of Fire, Academic Press, London, 1995

[12] Magnussen B.F., Hjertager B.H., “On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion”, Proc. Combust. Inst., 16 (1977), 719–729 | DOI

[13] Lockwood F.C., Shah N.G., “A new radiation solution method for incorporation in general combustion prediction procedures”, Proc. Combust. Inst., 18 (1981), 1405–1414 | DOI

[14] Bressloff N.W., Moss J.B., Rubini P.A., “Assessment of a Total Absorptivity Solution to the Radiative Transfer Equation as Applied in the Discrete Transfer Radiation Model”, Numerical Heat Transfer. Part B, 29 (1996), 381–397 | DOI

[15] Truelove J.S., “The two-flux model for radiative transfer with strongly anisotropic scattering”, Int. J. Heat Mass Transfer, 27:3 (1984), 464–466 | DOI

[16] Van Doormaal J.P., Raithby G.D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, 7:2 (1984), 147–163 | DOI | MR

[17] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamika zhidkostei, Energoatomizdat, M., 1984, 150 pp.

[18] Spalding D.B., “A novel finite difference formulation for differential expressions involving both first and second derivatives”, Int. J. Num. Mech. Eng., 1972, no. 4, 551 | DOI

[19] Stone H.L., “Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations”, SIAM J. Numer. Anal., 5:3 (1968), 530–558 | DOI | MR

[20] Ryzhov A.M., Khasanov I.R., Karpov A.V., Volkov A.V., Litskevich V.V., Dekterev A.A., Primenenie polevogo metoda matematicheskogo modelirovaniya pozharov v pomescheniyakh, metod. rekomendatsii, VNIIPO, M., 2002, 35 pp.

[21] Weckman E.J., Strong A.B., “Experimental Investigation of ere Turbulence Structure of Medium Scale Methanol Pool Fires”, Combustion and Flame, 105:3 (1996), 245–266 | DOI

[22] Karpov A.V., Kryukov A.P., Ryzhov A.M., “Polevoe modelirovanie protsessov teplo- i massoperenosa v plameni i voskhodyaschei svobodnokonvektivnoi strue”, Pozharovzryvobezopasnost, 10:2 (2001), 35–41

[23] Adiga K.C., Ramaker D.E., Tatem P.A., Williams F.W., “Modeling thermal radiation in open liquid pool fires”, Fire Safety Science, Proc. of II Int Symp. on Fire Safety Science, 1989, 241–250 | DOI

[24] Gengembre E., Cambray P., Karmed D., Bellet J.C., “Turbulent diffusion flames with large buoyancy effects”, Combustion Science and Technology, 41 (1984), 55–67 | DOI

[25] Blunsdon C.A., Beeri Z., Malalasekera W.M.G., Dent J.C., “Modeling Buoyant Turbulent Diffusion Flames in Coherent Flame-sheet model”, Symposium on Fire and Combustion, ASME Winter Annual Meeting (November, 1994), ASME, Chicago, 1994

[26] Kopylov N.P., Fedotkin D.V., Karpov A.V., Sushkina E.Yu., “Modelirovanie tusheniya pozharov nefteproduktov v rezervuarakh s primeneniem vodopennykh ognetushaschikh veschestv”, Bezopasnost truda v promyshlennosti, 2020, no. 8, 12–22 | DOI

[27] Bezrodnyi I.F., Babenko V.V., “O razrushayuschem vozdeistvii plameni na penu”, Pozharnaya tekhnika i pozharotushenie, VNIIPO, M., 1998, 80–82

[28] Milekhin Yu.M., Derevyakin V.A., Kononov B.V., Kraushanskii Ya.M., Krasov A.V., Kopylov N.P., Fedotkin D.V., Avtonomnaya ustanovka pennogo pozharotusheniya krupnykh rezervuarov s legkovosplamenyayuschimisya zhidkostyami, Patent No 2674710 RF, 2018