@article{VTGU_2022_76_a6,
author = {T. Yu. Galushina and E. A. Nikolaeva and D. S. Krasavin and O. N. Lenter},
title = {Application of machine learning methods for the classification of asteroid resonance motion},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {87--100},
year = {2022},
number = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a6/}
}
TY - JOUR AU - T. Yu. Galushina AU - E. A. Nikolaeva AU - D. S. Krasavin AU - O. N. Lenter TI - Application of machine learning methods for the classification of asteroid resonance motion JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 87 EP - 100 IS - 76 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a6/ LA - ru ID - VTGU_2022_76_a6 ER -
%0 Journal Article %A T. Yu. Galushina %A E. A. Nikolaeva %A D. S. Krasavin %A O. N. Lenter %T Application of machine learning methods for the classification of asteroid resonance motion %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 87-100 %N 76 %U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a6/ %G ru %F VTGU_2022_76_a6
T. Yu. Galushina; E. A. Nikolaeva; D. S. Krasavin; O. N. Lenter. Application of machine learning methods for the classification of asteroid resonance motion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 87-100. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a6/
[1] B.M. Shustov, L.V. Rykhlova (red.), Asteroidno-kometnaya opasnost: vchera, segodnya, zavtra, Fizmatlit, M., 2010, 384 pp.
[2] Galushina T.Yu., “Orbitalnye i vekovye rezonansy v dvizhenii asteroidov, sblizhayuschikhsya s Zemlei”, Fizika kosmosa, tr. 49-i Mezhdunar. studencheskoi nauch. konf. (Ekaterinburg, 27-31 yanvarya 2020), UrFU, Ekaterinburg, 2020, 6–18
[3] Krasavin D.S., Aleksandrova A.G., Tomilova I.V., “Primenenie iskusstvennykh neironnykh setei v zadachakh analiza dinamicheskoi struktury oblastei okolozemnogo orbitalnogo prostranstva”, Izvestiya vuzov. Fizika, 63:3 (2020), 70–75
[4] Krasavin D.S., Aleksandrova A.G., Tomilova I.V., “Primenenie iskusstvennykh neironnykh setei v issledovanii dinamicheskoi struktury okolozemnogo orbitalnogo prostranstva”, Izvestiya vuzov. Fizika, 64:10 (2021), 38–43
[5] Grebenikov E.A., Ryabov Yu.A., Rezonansy i malye znamenateli v nebesnoi mekhanike, Nauka, M., 1978, 128 pp. | MR
[6] Geron A., Hands-On Machine Learning with Scikit-Leam, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed., O'Reilly Media, Sebastopol, 2019, 484 pp.
[7] Burkov A., The Hundred-Page Machine Learning Book, 2019, 152 pp. (accessed: 27.07.2021) http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
[8] Nilsson N.J., Introduction to machine learning (accessed: 26.04.2021) http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf
[9] Parameter Selection for HDBSCAN : HDBSCAN Clustering Library Documentation (accessed: 09.01.2021) https://hdbscan.readthedocs.io/en/latest/parameter_selection.html