@article{VTGU_2022_76_a5,
author = {S. V. Bakushev},
title = {Differential equations of continuum equilibrium for plane deformation in {Cartesian} axials at biquadratic approximation of closing equations},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {70--86},
year = {2022},
number = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/}
}
TY - JOUR AU - S. V. Bakushev TI - Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 70 EP - 86 IS - 76 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/ LA - ru ID - VTGU_2022_76_a5 ER -
%0 Journal Article %A S. V. Bakushev %T Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 70-86 %N 76 %U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/ %G ru %F VTGU_2022_76_a5
S. V. Bakushev. Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 70-86. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/
[1] Novozhilov V.V., Teoriya uprugosti, Sudpromgiz, M., 1958, 370 pp.
[2] Kolchunov V.I., Fedorov V.S., “Ponyatiinaya ierarkhiya modelei v teorii soprotivleniya stroitelnykh konstruktsii”, Promyshlennoe i grazhdanskoe stroitelstvo, 2020, no. 8, 16–23 | DOI
[3] Lirola J.M. et al., “A review on experimental research using scale models for buildings: application and methodologies”, Energy and Buildings, 142 (2017), 72–110 | DOI
[4] Li W. et al., “In-plane strengthening effect of prefabricated concrete walls on masonry struc tures: shaking table test”, Shock and Vibration, 2017 (2017), 3178032 | DOI
[5] Seth B.R., “Finite Strain in Elastic Problems”, Phil. Trans. Toy. Soc. Ser. A, 234 (1935), 231–264
[6] Zvolinskii N.V., Riz P.M., “O nekotorykh zadachakh nelineinoi teorii uprugosti”, Prikladnaya matematika i mekhanika, 2:4 (1939), 417–426
[7] Signorini A., “Transformazioni termoelastiche finite”, Ann. Mat. Pur. Appl. Ser. IV, 22 (1943), 33–143 ; 30 (1948), 1–72 | DOI | MR | MR
[8] Murnaghan F.D., Finite Deformation of an Elastic Solid, Wiley, New York, 1951 | MR
[9] Geniev G.A., “K voprosu o deformatsionnoi teorii plastichnosti sypuchei sredy”, Stroitelnaya mekhanika i raschet sooruzhenii, 1974, no. 4, 8–10
[10] Geniev G.A., Kissyuk V.N., Tyupin G.A., Teoriya plastichnosti betona i zhelezobetona, Stroiizdat, M., 1974, 316 pp.
[11] Geniev G.A., Pyatikrestovskii K.P., Kolchunov V.I., Klyueva N.V., “Deformatsionnye zavisimosti i opredelyayuschie uravneniya dlya lda i ledovykh massivov”, Izvestiya vysshikh uchebnykh zavedenii. Stroitelstvo, 2004, no. 3 (543), 14–19
[12] Karpenko N.I., Obschie modeli mekhaniki zhelezobetona, Stroiizdat, M., 1996, 416 pp.
[13] Karpenko N.I., Karpenko S.N., “Postroenie fizicheskikh sootnoshenii dlya rascheta zhelezobetonnykh konstruktsii pri ob'emnom napryazhennom sostoyanii s uchetom fizicheskoi nelineinosti materialov”, Zhilischnoe stroitelstvo, 2016, no. 6, 16–20
[14] Bakushev S.V., “Variant postroeniya raschetnykh modelei geometricheski-nelineinykh sploshnykh sred”, Izvestiya vuzov. Stroitelstvo i arkhitektura, 1991, no. 9, 24–29
[15] Bakushev S.V., Geometricheski i fizicheski nelineinaya mekhanika sploshnoi sredy: ploskaya zadacha, Izd. stereotip., Librokom, M., 2020, 312 pp.
[16] Shamrovskii A.D., Lymarenko Yu.A., Kolesnik D.N., Minyailo T.A., Krivulyak V.V., “Diskretnye modeli dlya ploskikh staticheskikh zadach teorii uprugosti”, Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 3:7 (51) (2011), 11–18
[17] Metrikine A.V., Ashes H., “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation”, European Journal of Mechanics A / Solids, 21 (2002), 555–572 | DOI
[18] Shamrovskii A.D., Kolesnik D.N., “Rol nelineinykh effektov pri reshenii odnoi ploskoi zadachi teorii uprugosti”, Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 5:7 (53) (2011), 59–62
[19] Kuropatenko V.F., “Novye modeli mekhaniki sploshnykh sred”, Inzhenerno-fizicheskii zhurnal, 84:1 (2011), 74–92
[20] Oshkhunov M.M., Nagoev Z.V., “Modelirovanie svoistv deformiruemykh sred vzaimodeistvuyuschimi chastitsami”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser. Matematika. Fizika, 2014, no. 19 (190), 155–163
[21] Guzev M.A., Gorbunov A.V., “Neevklidova model sploshnoi sredy i opisanie ostatochnykh napryazhenii”, Vestnik Inzhenernoi shkoly Dalnevostochnogo federalnogo universiteta, 2020, no. 2 (43), 3–12 | DOI
[22] Kroner E., “Incompatibility, defects, and stress functions in the mechanics of generalized continua”, International J. of Solids and Structures, 21:7 (1985), 747–756 | DOI
[23] Sultanov L.U., “Issledovanie konechnykh uprugoplasticheskikh deformatsii. Kinematika sredy i opredelyayuschie sootnosheniya”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 157:4 (2015), 158–165
[24] Mischenko A.V., “Sposob formirovaniya nelineinykh fizicheskikh sootnoshenii v pryamykh i obratnykh zadachakh rascheta mnogofaznykh sterzhnei”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser. Stroitelstvo i arkhitektura, 14:3 (2014), 12–16
[25] Tsvelodub I.Yu., “O raznomodulnoi teorii uprugosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 49:1 (287) (2008), 157–164 | MR
[26] Vasilev V.V., “Simmetriya tenzora napryazhenii i singulyarnye resheniya v teorii uprugosti”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2010, no. 2, 62–72
[27] Ivanov S.P., Akhmetshin M.N., “Reshenie fizicheski nelineinoi ploskoi zadachi teorii uprugosti i ee prilozhenie k raschetu balok, kontaktiruyuschikh so sredoi”, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2012, no. 2, 33–36
[28] Kruglov V.M., Erofeev V.T., Vatin N.I., Al D.S., “Variant deformatsionnoi teorii plastichnosti betona v ploskom napryazhennom sostoyanii”, Transportnye sooruzheniya, 6:4 (2019), 10 | DOI
[29] Roganova N.A., Sharafutdinov G.Z., “Nekotorye metody resheniya ploskikh zadach teorii uprugosti neodnorodnykh tel”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-5, 2460–2462
[30] Lalin V.V., Myakshikova E.A., “Kvadratichnoe priblizhenie v nelineinoi teorii sterzhnei”, AlfaBuild, 2018, no. 3 (5), 20–32
[31] Simo J.C., Tarnow N., Doblare M., “Non-linear dynamics of three-dimensional rods: exact energy and momentum conservation algorithms”, International Journal for Numerical Methods in Engineering, 38:9 (1995), 1431–1473 | DOI | MR
[32] Antman S.S., Nonlinear problems of elasticity, Springer, Berlin-Heidelberg-New York, 2005, 835 pp. | MR
[33] Bakushev S.V., “Approksimatsiya diagramm deformirovaniya bilineinymi funktsiyami”, Stroitelnaya mekhanika i raschet sooruzhenii, 2019, no. 2 (283), 2–11
[34] Bakushev S.V., “Approksimatsiya diagramm deformirovaniya kvadratichnymi funktsiyami”, Stroitelnaya mekhanika i raschet sooruzhenii, 2020, no. 3 (290), 2–14 | DOI
[35] Bakushev S.V., Differentsialnye uravneniya i kraevye zadachi mekhaniki deformiruemogo tverdogo tela, LENAND, M., 2020, 304 pp.