Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 70-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject under analysis is construction of differential equations of equilibrium in displacements for plane deformation of physically and geometrically nonlinear continuous media when the closing equations are biquadratically approximated in a Cartesian rectangular coordinate system. Proceeding from the assumption that, generally speaking, the diagrams of volume and shear deformation are independent from each other, six main cases of physical dependences are considered, depending on the relative position of the break points of biquadratic diagrams of volume and shear deformation. Construction of physical dependencies is based on the calculation of the secant module of volume and shear deformation. When approximating the graphs of volume and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volume and shear deformation, the secant shear modulus is a fractional (rational) function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a fractional (rational) function of the first invariant of the strain tensor. The obtained differential equations of equilibrium in displacements can be applied in determining the stress-strain state of physically and geometrically nonlinear continuous media under plane deformation the closing equations of physical relations for which are approximated by biquadratic functions.
Keywords: continuous medium, plane deformation, differential equations of equilibrium, biquadratic closing equations, geometrically linear model, geometrically nonlinear model.
@article{VTGU_2022_76_a5,
     author = {S. V. Bakushev},
     title = {Differential equations of continuum equilibrium for plane deformation in {Cartesian} axials at biquadratic approximation of closing equations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {70--86},
     year = {2022},
     number = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/}
}
TY  - JOUR
AU  - S. V. Bakushev
TI  - Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 70
EP  - 86
IS  - 76
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/
LA  - ru
ID  - VTGU_2022_76_a5
ER  - 
%0 Journal Article
%A S. V. Bakushev
%T Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 70-86
%N 76
%U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/
%G ru
%F VTGU_2022_76_a5
S. V. Bakushev. Differential equations of continuum equilibrium for plane deformation in Cartesian axials at biquadratic approximation of closing equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 70-86. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a5/

[1] Novozhilov V.V., Teoriya uprugosti, Sudpromgiz, M., 1958, 370 pp.

[2] Kolchunov V.I., Fedorov V.S., “Ponyatiinaya ierarkhiya modelei v teorii soprotivleniya stroitelnykh konstruktsii”, Promyshlennoe i grazhdanskoe stroitelstvo, 2020, no. 8, 16–23 | DOI

[3] Lirola J.M. et al., “A review on experimental research using scale models for buildings: application and methodologies”, Energy and Buildings, 142 (2017), 72–110 | DOI

[4] Li W. et al., “In-plane strengthening effect of prefabricated concrete walls on masonry struc tures: shaking table test”, Shock and Vibration, 2017 (2017), 3178032 | DOI

[5] Seth B.R., “Finite Strain in Elastic Problems”, Phil. Trans. Toy. Soc. Ser. A, 234 (1935), 231–264

[6] Zvolinskii N.V., Riz P.M., “O nekotorykh zadachakh nelineinoi teorii uprugosti”, Prikladnaya matematika i mekhanika, 2:4 (1939), 417–426

[7] Signorini A., “Transformazioni termoelastiche finite”, Ann. Mat. Pur. Appl. Ser. IV, 22 (1943), 33–143 ; 30 (1948), 1–72 | DOI | MR | MR

[8] Murnaghan F.D., Finite Deformation of an Elastic Solid, Wiley, New York, 1951 | MR

[9] Geniev G.A., “K voprosu o deformatsionnoi teorii plastichnosti sypuchei sredy”, Stroitelnaya mekhanika i raschet sooruzhenii, 1974, no. 4, 8–10

[10] Geniev G.A., Kissyuk V.N., Tyupin G.A., Teoriya plastichnosti betona i zhelezobetona, Stroiizdat, M., 1974, 316 pp.

[11] Geniev G.A., Pyatikrestovskii K.P., Kolchunov V.I., Klyueva N.V., “Deformatsionnye zavisimosti i opredelyayuschie uravneniya dlya lda i ledovykh massivov”, Izvestiya vysshikh uchebnykh zavedenii. Stroitelstvo, 2004, no. 3 (543), 14–19

[12] Karpenko N.I., Obschie modeli mekhaniki zhelezobetona, Stroiizdat, M., 1996, 416 pp.

[13] Karpenko N.I., Karpenko S.N., “Postroenie fizicheskikh sootnoshenii dlya rascheta zhelezobetonnykh konstruktsii pri ob'emnom napryazhennom sostoyanii s uchetom fizicheskoi nelineinosti materialov”, Zhilischnoe stroitelstvo, 2016, no. 6, 16–20

[14] Bakushev S.V., “Variant postroeniya raschetnykh modelei geometricheski-nelineinykh sploshnykh sred”, Izvestiya vuzov. Stroitelstvo i arkhitektura, 1991, no. 9, 24–29

[15] Bakushev S.V., Geometricheski i fizicheski nelineinaya mekhanika sploshnoi sredy: ploskaya zadacha, Izd. stereotip., Librokom, M., 2020, 312 pp.

[16] Shamrovskii A.D., Lymarenko Yu.A., Kolesnik D.N., Minyailo T.A., Krivulyak V.V., “Diskretnye modeli dlya ploskikh staticheskikh zadach teorii uprugosti”, Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 3:7 (51) (2011), 11–18

[17] Metrikine A.V., Ashes H., “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation”, European Journal of Mechanics A / Solids, 21 (2002), 555–572 | DOI

[18] Shamrovskii A.D., Kolesnik D.N., “Rol nelineinykh effektov pri reshenii odnoi ploskoi zadachi teorii uprugosti”, Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 5:7 (53) (2011), 59–62

[19] Kuropatenko V.F., “Novye modeli mekhaniki sploshnykh sred”, Inzhenerno-fizicheskii zhurnal, 84:1 (2011), 74–92

[20] Oshkhunov M.M., Nagoev Z.V., “Modelirovanie svoistv deformiruemykh sred vzaimodeistvuyuschimi chastitsami”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser. Matematika. Fizika, 2014, no. 19 (190), 155–163

[21] Guzev M.A., Gorbunov A.V., “Neevklidova model sploshnoi sredy i opisanie ostatochnykh napryazhenii”, Vestnik Inzhenernoi shkoly Dalnevostochnogo federalnogo universiteta, 2020, no. 2 (43), 3–12 | DOI

[22] Kroner E., “Incompatibility, defects, and stress functions in the mechanics of generalized continua”, International J. of Solids and Structures, 21:7 (1985), 747–756 | DOI

[23] Sultanov L.U., “Issledovanie konechnykh uprugoplasticheskikh deformatsii. Kinematika sredy i opredelyayuschie sootnosheniya”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 157:4 (2015), 158–165

[24] Mischenko A.V., “Sposob formirovaniya nelineinykh fizicheskikh sootnoshenii v pryamykh i obratnykh zadachakh rascheta mnogofaznykh sterzhnei”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser. Stroitelstvo i arkhitektura, 14:3 (2014), 12–16

[25] Tsvelodub I.Yu., “O raznomodulnoi teorii uprugosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 49:1 (287) (2008), 157–164 | MR

[26] Vasilev V.V., “Simmetriya tenzora napryazhenii i singulyarnye resheniya v teorii uprugosti”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2010, no. 2, 62–72

[27] Ivanov S.P., Akhmetshin M.N., “Reshenie fizicheski nelineinoi ploskoi zadachi teorii uprugosti i ee prilozhenie k raschetu balok, kontaktiruyuschikh so sredoi”, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2012, no. 2, 33–36

[28] Kruglov V.M., Erofeev V.T., Vatin N.I., Al D.S., “Variant deformatsionnoi teorii plastichnosti betona v ploskom napryazhennom sostoyanii”, Transportnye sooruzheniya, 6:4 (2019), 10 | DOI

[29] Roganova N.A., Sharafutdinov G.Z., “Nekotorye metody resheniya ploskikh zadach teorii uprugosti neodnorodnykh tel”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-5, 2460–2462

[30] Lalin V.V., Myakshikova E.A., “Kvadratichnoe priblizhenie v nelineinoi teorii sterzhnei”, AlfaBuild, 2018, no. 3 (5), 20–32

[31] Simo J.C., Tarnow N., Doblare M., “Non-linear dynamics of three-dimensional rods: exact energy and momentum conservation algorithms”, International Journal for Numerical Methods in Engineering, 38:9 (1995), 1431–1473 | DOI | MR

[32] Antman S.S., Nonlinear problems of elasticity, Springer, Berlin-Heidelberg-New York, 2005, 835 pp. | MR

[33] Bakushev S.V., “Approksimatsiya diagramm deformirovaniya bilineinymi funktsiyami”, Stroitelnaya mekhanika i raschet sooruzhenii, 2019, no. 2 (283), 2–11

[34] Bakushev S.V., “Approksimatsiya diagramm deformirovaniya kvadratichnymi funktsiyami”, Stroitelnaya mekhanika i raschet sooruzhenii, 2020, no. 3 (290), 2–14 | DOI

[35] Bakushev S.V., Differentsialnye uravneniya i kraevye zadachi mekhaniki deformiruemogo tverdogo tela, LENAND, M., 2020, 304 pp.