Numerical simulation of the process manufacture of large-scale composite shell taking into account thermo viscoelastic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 165-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this work is to obtain the evolution of contact pressure on the surface of the forming mandrel during the manufacture of large-scale composite shells by continuous winding. A numerical analogue of a real structure is built in the form of a system of assembly equipment, a forming mandrel and a shell. Effective viscoelastic characteristics for the shell material are obtained on the basis of experimental data and the concept of multilevel modeling. A series of computational experiments has been carried out to verify the model of thermoviscoelastic behavior of a composite material; the model is a combination of anisotropic elastic behavior of a medium with one independent viscoelastic operator. It has been found that, at the stage of winding, the influence of the behavior model of the shell material is not significant because viscoelasticity of the mandrel material makes the greatest contribution to the reduction of the contact pressure on the mandrel surface. Based on the data obtained, a conclusion is made that it is advisable and important to take into account the rheological properties not only of the material of the forming mandrel but also of the multilayer shell. The methods of finite element analysis presented in the work and the computational modules and programs implemented on their basis, as well as the calculation results, are of great practical importance for automating the process of predicting the evolution of the stress-strain state at the technological stages of manufacturing structures of the mandrel-shell type.
Keywords: thermoviscoelasticity, continuous winding method, laminated composite material, multilevel modeling, Prony series, Williams-Landel-Ferry shift function.
@article{VTGU_2022_76_a11,
     author = {L. R. Sakhabutdinova and O. Yu. Smetannikov and G. V. Il'inykh},
     title = {Numerical simulation of the process manufacture of large-scale composite shell taking into account thermo viscoelastic},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {165--181},
     year = {2022},
     number = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a11/}
}
TY  - JOUR
AU  - L. R. Sakhabutdinova
AU  - O. Yu. Smetannikov
AU  - G. V. Il'inykh
TI  - Numerical simulation of the process manufacture of large-scale composite shell taking into account thermo viscoelastic
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 165
EP  - 181
IS  - 76
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a11/
LA  - ru
ID  - VTGU_2022_76_a11
ER  - 
%0 Journal Article
%A L. R. Sakhabutdinova
%A O. Yu. Smetannikov
%A G. V. Il'inykh
%T Numerical simulation of the process manufacture of large-scale composite shell taking into account thermo viscoelastic
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 165-181
%N 76
%U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a11/
%G ru
%F VTGU_2022_76_a11
L. R. Sakhabutdinova; O. Yu. Smetannikov; G. V. Il'inykh. Numerical simulation of the process manufacture of large-scale composite shell taking into account thermo viscoelastic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 165-181. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a11/

[1] Chang-Uk Kim, Jung-il Song, “Development of lightweight fiber-reinforced composite pins for heavy load long pitch roller chains”, Composite Structures, 236 (2020), 111839 | DOI

[2] Adamov A.A., Kamenskikh A.A., Pankova A.P., “Chislennyi analiz geometricheskoi konfiguratsii sfericheskoi opornoi chasti s antifriktsionnoi prosloikoi iz raznykh materialov”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, 15–26

[3] Donetskii K.I., Bystrikova D.V., Karavaev R.Yu., Timoshkov P.N., “Polimernye kompozitsionnye materialy dlya sozdaniya elementov transmissii aviatsionnoi tekhniki (obzor)”, Trudy VIAM, 2020, no. 3 (87), 82–93 | DOI

[4] Sebaey T.A., “Design of Oil and Gas Composite Pipes for Energy Production”, Energy Procedia, 162 (2019), 146–155 | DOI

[5] Benea L., Simionescu N., Mardare L., “The effect of polymeric protective layers and the immer sion time on the corrosion behavior of naval steel in natural seawater”, Journal of Materials Research and Technology, 9:6 (2020), 13174–13184 | DOI

[6] Changliang Lai, Yang Hu, Qing Zheng, Hualin Fan, “All-composite flanges for anisogrid lattice-core sandwich panels to bear stretching load”, Composites Communications, 19 (2020), 189–193 | DOI

[7] Lei Zu, Hui Xu, Huabi Wang, Bing Zhang, Bin Zi, “Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding”, Composite Structures, 207 (2019), 41–52 | DOI

[8] Sirotkin O.S., Bogolyubov V.S., Malkov I.V., Syrovoi G.V., “Formoobrazovanie namotkoi korpusnykh konstruktsii LA slozhnoi formy iz kompozitsionnykh materialov”, Aviatsionnaya promyshlennost, 2016, no. 4, 29–35

[9] Vorobei V.V., Evstratov S.V., “Novye napravleniya v sovremennoi tekhnologii namotki konstruktsii iz kompozitsionnykh materialov”, Vestnik MAI, 16:1 (2009), 6172

[10] Rusakov I.Yu., Sofronov V.L., Osnovy konstruirovaniya i rascheta elementov oborudovaniya otrasli, ucheb. posobie, Izd-vo STI NIYaU MIFI, Seversk, 2018, 271 pp.

[11] Zuev A.S., Emashev A.Yu., Shaidurova G.I., “Analiz osobennostei izgotovleniya izdelii iz polimernykh kompozitsionnykh materialov metodom namotki. Formoobrazuyuschie opravki”, Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2018, no. 3, 4 pp. | DOI

[12] Kozhanov D.A., Lyubimov A.K., “Modelirovanie gibkikh tkanykh kompozitov v sisteme ANSYS MECHANICAL APDL”, Kompyuternye issledovaniya i modelirovanie, 10:6 (2018), 789–799 | DOI

[13] Vasilev V.V., Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988, 272 pp.

[14] Antonov V.I., “Nachalnye napryazheniya v anizotropnom neodnorodnom tsilindre, obrazovannom namotkoi”, Vestnik MGSU, 2010, no. 4, 28–33

[15] Zakharychev S.P., Ivanov V.A., Otmakhov D.V., Avdeev V.A., “Vliyanie tekhnologicheskikh uslovii namotki na svoistva polimernykh kompozitsionnykh materialov”, Vestnik TOGU, 2010, no. 1 (16), 55–64

[16] Yankovskii A.P., “Modelirovanie lineino-termovyazkouprugogo povedeniya kompozitov s prostranstvennoi strukturoi armirovaniya”, Konstruktsii iz kompozitsionnykh materialov, 2016, no. 2, 3–14 | MR

[17] Babushkin A.V., Vildeman V.E., Lobanov D.S., “Ispytaniya na rastyazhenie odnonapravlennogo vysokonapolnennogo stekloplastika pri normalnykh i povyshennykh temperaturakh”, Zavodskaya laboratoriya. Diagnostika materialov, 76:7 (2010), 57–59

[18] Sukhodoeva A.A., “Sovmestnoe deformirovanie opravki i kompozitsionnoi obolochki pri silovoi namotke”, Vestnik PGTU. Vychislitelnaya matematika i mekhanika, 2000, 52–55

[19] Belyaev N.M., Ryadno A.A., Metody teorii teploprovodnosti, v. 2, Vysshaya shkola, M., 1982, 304 pp. | MR

[20] Lekhnitskii S.G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977, 416 pp.

[21] Sletova A.A., Lobanov D.S., Vildeman V.E., Smetannikov O.Yu., “Eksperimentalnoe izuchenie temperaturnykh zavisimostei prochnostnykh i uprugikh kharakteristik i reologicheskogo povedeniya obraztsov peschano-polimernoi kompozitsii pri szhatii”, Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii, 1 (2018), 272–276

[22] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970, 281 pp. | MR

[23] Otero J.A., Rodriguez-Ramos R., Guinovart-Diaz R. et al., “Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony's series”, Acta Mech., 231 (2020), 2761–2771 | DOI | MR

[24] Bednarcyk B.A., Stier B., Simon J-W., Reese S., Pineda E.J., “Meso- and micro-scale modeling of damage in plain weave composites”, Composite Structures, 121 (2015), 258–270 | DOI

[25] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo Mosk. un-ta, M., 1984, 336 pp.

[26] Kulikov R.G., Trufanov N.A., “Primenenie iteratsionnogo metoda k resheniyu zadachi deformirovaniya odnonapravlennogo kompozitsionnogo materiala s nelineinovyazkouprugim svyazuyuschim”, Vychislitelnaya mekhanika sploshnykh sred, 4:2 (2011), 61–71

[27] Smetannikov O.Yu., Trufanov N.A., “Chislennyi analiz tekhnologicheskikh i ostatochnykh napryazhenii v stekluyuschikhsya telakh”, Vychislitelnaya mekhanika sploshnykh sred, 1:1 (2008), 92–107