Infinite distohastic square operators in $l_1$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 20-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to bistochastic quadratic operators. The concept of a bistochastic quadratic operator is introduced and the property of such operators is studied. A necessary and sufficient condition for bistochasticity is given. An analogue of Birkhoff's theorem is studied for the class of bistochastic quadratic operators. A sufficient condition for the extremity of bistochastic quadratic operators is obtained, and a necessary condition is also obtained for small dimensions. The concept of bistochastic quadratic operators is generalized, and the concept of a bistochastic operator of arbitrary order is introduced.
Keywords: bistochastic quadratic operator, infinite-dimensional bistochastic quadratic operator, extreme points of the set of bistochastic matrices.
@article{VTGU_2022_76_a1,
     author = {A. A. Imomov and A. I. Eshniyazov},
     title = {Infinite distohastic square operators in~$l_1$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--31},
     year = {2022},
     number = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_76_a1/}
}
TY  - JOUR
AU  - A. A. Imomov
AU  - A. I. Eshniyazov
TI  - Infinite distohastic square operators in $l_1$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 20
EP  - 31
IS  - 76
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_76_a1/
LA  - ru
ID  - VTGU_2022_76_a1
ER  - 
%0 Journal Article
%A A. A. Imomov
%A A. I. Eshniyazov
%T Infinite distohastic square operators in $l_1$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 20-31
%N 76
%U http://geodesic.mathdoc.fr/item/VTGU_2022_76_a1/
%G ru
%F VTGU_2022_76_a1
A. A. Imomov; A. I. Eshniyazov. Infinite distohastic square operators in $l_1$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 76 (2022), pp. 20-31. http://geodesic.mathdoc.fr/item/VTGU_2022_76_a1/

[1] Lyubich Yu.I., Matematicheskie struktury v populyatsionnoi genetike, Naukova dumka, Kiev, 1983, 296 pp. | MR

[2] Faistel R., Romanovskii Yu.M., Vasilev V.A., “Evolyutsiya gipertsiklov Eigena, prote kayuschikh v koatservatakh”, Biofizika, 25:5 (1980), 882–887

[3] Flach S., Ivanchenko M.V., Kanakov O.I., “q-Breathers and the Fermi-Pasta-Ulam problem”, Phys. Rev. Lett., 95 (2005), 064102 | DOI | MR

[4] Ganikhodzhaev R.N., “K opredeleniyu bistokhasticheskikh kvadratichnykh operatorov”, UMN, 4 (1993), 231–232

[5] Roy N., “Extreme points and $\ell^1(\Gamma)$ spaces”, Proc. Amer. Math. Soc., 1982, no. 86, 216–218 | MR

[6] Marshal A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983, 575 pp.

[7] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972, 232 pp. | MR