Investigation of nonisothermal two-dimensional filtration in multylayer reservoir
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 100-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of an unsteady temperature field during two-dimensional fluid filtration in a multilayer reservoir is investigated taking into account the barothermal effect, radial and vertical permeability inhomogeneities. The results of comparing the analytical and numerical calculations of the temperature changes of the fluid flowing from the reservoir for two various models of reservoir heterogeneity are presented. From the obtained results it follows that 1. The presence of radial inhomogeneity of permeability in the near-well zone of the layered formation leads to fluid flows between the layers, which affects the temperature change rate of the liquid flowing from individual layers. 2. Non-stationary temperature profiles over the thickness of the layered formation at low inflow times contain information about the flows between the layers due to radial inhomogeneity in the near-well zone of the formation. 3. Flows between layers lead to large errors in solving the inverse problem of estimating the distribution of permeability in the reservoir based on non-stationary temperature data. 4. The presence of flows between the layers does not exclude the possibility of estimating the radius of the contamination zone. 5. To correctly account for the influence of flows between layers when calculating the nonstationary temperature in a layered formation with a disturbed near-well zone, it is necessary either to use a two-dimensional numerical model of non-isothermal filtration or to change the algorithm for correcting the layer's flow rate for short and long inflow times in the one-dimensional analytical model.
Keywords: thermometry, two-dimensional filtration, well, heterogeneous reservoir, permeability, crossflow.
@article{VTGU_2022_75_a8,
     author = {D. F. Islamov and A. Sh. Ramazanov},
     title = {Investigation of nonisothermal two-dimensional filtration in multylayer reservoir},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {100--112},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a8/}
}
TY  - JOUR
AU  - D. F. Islamov
AU  - A. Sh. Ramazanov
TI  - Investigation of nonisothermal two-dimensional filtration in multylayer reservoir
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 100
EP  - 112
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a8/
LA  - ru
ID  - VTGU_2022_75_a8
ER  - 
%0 Journal Article
%A D. F. Islamov
%A A. Sh. Ramazanov
%T Investigation of nonisothermal two-dimensional filtration in multylayer reservoir
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 100-112
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a8/
%G ru
%F VTGU_2022_75_a8
D. F. Islamov; A. Sh. Ramazanov. Investigation of nonisothermal two-dimensional filtration in multylayer reservoir. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 100-112. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a8/

[1] Chekalyuk E. B., Termodinamika neftyanogo plasta, Nedra, M., 1965, 238 pp.

[2] Ramazanov A. Sh., Valiullin R. A., Sadretdinov A. A. i dr., Termogidrodinamicheskie issledovaniya v skvazhine dlya opredeleniya parametrov priskvazhinnoi zony plasta i debitov mnogoplastovoi sistemy, SPE 136256-RU, 2010, 23 pp.

[3] Sharafutdinov R. F., Sadretdinov A. A., Sharipov A. M., “Chislennoe issledovanie temperaturnogo polya v plaste s treschinoi gidrorazryva”, Prikladnaya mekhanika i tekhnicheskaya fizika, 58:4 (2017), 153–162 | DOI

[4] Muradov K., Davies D., Durham C., Waterhouse R., Transient Pressure and Temperature Interpretation in Intelligent Wells of the Golden Eagle Field, SPE 185817-MS, 2017

[5] Sui W., Determining multilayer formation properties from transient temperature and pressure measurements, PhD dissertation, Texas A University, 2009

[6] Valiullin R. A., Ramazanov A. Sh., Khabirov T. R. i dr., Interpretatsiya termogidrodinamicheskikh issledovanii pri ispytanii skvazhiny na osnove chislennogo simulyatora, SPE 176589, 2015

[7] Islamov D. F., Sadretdinov A. A., “Issledovanie temperaturnogo polya v sloistom plaste”, Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 330:8 (2019), 27–36

[8] Akhmetova O. V., “Nestatsionarnoe temperaturnoe pole v sloisto-neodnorodnom ortotropnom poristom plaste”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 2:3 (2016), 10–23

[9] Badertdinova E. R., “Opredelenie filtratsionnykh i teplofizicheskikh parametrov sloistogo plasta po rezultatam termogidrodinamicheskikh i gidrodinamicheskikh issledovanii vertikalnykh skvazhin na osnove teorii regulyarizatsii”, Vestnik Kazanskogo tekhnologicheskogo universiteta, 18:5 (2015), 194–198

[10] Mao Y., Zeidouni M., Temperature Transient Analysis of Characterization of Multilayer Reservoirs with Crossflow, SPE 185654, 2017 | MR

[11] Park H., Well Test Analysis of a multilayered reservoir with formation crossflow, PhD dissertation, Stanford University, 1989

[12] Basniev K. S., Dmitriev N. M., Kanevskaya R. D., Maksimov V. M., Podzemnaya gidromekhanika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2006, 488 pp. | MR

[13] Aziz Kh., Settari E., Matematicheskoe modelirovanie plastovykh sistem, Nedra, M., 1982, 407 pp.

[14] Hawkins M. F.Jr., “A note on the skin effect”, Trans. AIME, 207 (1956), 356–357

[15] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964, 488 pp.