Direct and inverse dynamic problems of poroelasticity
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 87-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In applied problems related to propagation of elastic waves, it is often necessary to take into account porosity, fluid saturation of the media, and the hydrodynamic background. Real geological media are multiphase, electrically conductive, fractured, porous, etc. When propagating, seismic waves dissipate due to the absorption of energy. In this paper, the wave propagation process occurs in terms of partial densities of phases, stress tensor, pore pressure, and velocities of the corresponding phases. In the first section, for completeness, the presentation presents a quasilinear system of equations of the poroelasticity theory [1-3]. In the second section, the corresponding linear system of equations of the poroelasticity theory for a homogeneous medium is obtained. In the third section, we construct a fundamental solution for the system of equations of the poroelasticity theory obtained in the second section. In the final section, the inverse poroelasticity problem of determining the distributed source in a half-space using additional information about the free surface mode is considered.
Keywords: direct problem, poroelasticity, distributed source, inverse problem, fundamental solution.
@article{VTGU_2022_75_a7,
     author = {Kh. Kh. Imomnazarov and A. E. Kholmurodov and A. T. Omonov},
     title = {Direct and inverse dynamic problems of poroelasticity},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {87--99},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a7/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - A. E. Kholmurodov
AU  - A. T. Omonov
TI  - Direct and inverse dynamic problems of poroelasticity
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 87
EP  - 99
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a7/
LA  - ru
ID  - VTGU_2022_75_a7
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A A. E. Kholmurodov
%A A. T. Omonov
%T Direct and inverse dynamic problems of poroelasticity
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 87-99
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a7/
%G ru
%F VTGU_2022_75_a7
Kh. Kh. Imomnazarov; A. E. Kholmurodov; A. T. Omonov. Direct and inverse dynamic problems of poroelasticity. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 87-99. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a7/

[1] Dorovskii V. N., “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 30:7 (1989), 39–45

[2] Dorovskii V. N., Perepechko Yu. V., Romenskii E. I., “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 29:1 (1993), 93–103

[3] Blokhin A. M., Dorovskii V. N., Problemy matematicheskogo modelirovaniya v teorii mnogoskorstnogo kontinuuma, Novosibirsk, 1994, 183 pp.

[4] Imomnazarov Kh.Kh., “Uniqueness of determination of a sourse in the Cauchy problem for the system of equations of continual filtration theory”, Appl. Math. Lett., 11:2 (1998), 75–79 | DOI | MR

[5] Alekseev A. S., Imomnazarov Kh. Kh., Grachev E. V., Rakhmonov T. T., Imomnazarov B. Kh., “Pryamye i obratnye dinamicheskie zadachi dlya sistemy uravnenii kontinualnoi teorii filtratsii”, Sibirskii zhurn. industr. matem., 7:1 (2004), 3–8 | MR

[6] Imomnazarov S. H., Imomnazarov Kh., Kholmurodov A., Dilmuradov N., “On a problem arising in a two-fluid medium”, International Journal of Mathematical Analysis and Applications, 11:3 (2018), 49–57

[7] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range”, j. Acoust. Soc. Am., 28:2 (1956), 168–178 | DOI | MR

[8] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range”, j. Acoust. Soc. Am., 28:2 (1956), 179–191 | DOI | MR

[9] Pride S. R., “Governing equations for the coupled electromagnetics and acoustics of porous media”, Phys. Rev. B, 50:21 (1994), 15678–15696 | DOI

[10] Imomnazarov Kh. Kh., “Neskolko zamechanii dlya sistemy uravnenii Bio, opisyvayuschei poristuyu sredu”, Materialy mezhdunarodnoi konferentsii «Vypusknik NGU i nauchno-tekhnicheskii progress», v. 1, Novosibirsk, 1999, 46–47

[11] Imomnazarov Kh.Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR

[12] Imomnazarov K. K., Imomnazarov S. K., Korobov P. V., Kholmurodov A. E., “Direct and inverse problems for nonlinear one-dimensional poroelasticity equations”, Doklady RAS, 89:2 (2014), 250–252 | MR

[13] Romanov V. G., “Struktura resheniya zadachi Koshi dlya sistemy uravnenii elektrodinamiki i uprugosti v sluchae tochechnykh istochnikov”, Sibirskii matem. zhurnal, 36:3 (1995), 628–649 | MR

[14] Aki K., Richards P., Kolichestvennaya seismologiya, Mir, M., 1983, 830 pp.

[15] Kholmurodov A. E., Dilmurodov N., “Matematicheskoe modelirovanie odnoi nelineinoi dinamicheskoi sistemy, voznikayuschei v nasyschennoi zhidkostyu poristoi srede”, Problemy vychislitelnoi i prikladnoi matematiki. TUIT, 2017, no. 2(8), 56–61

[16] Kholmurodov A. E., Dilmuradov N., “Matematicheskoe modelirovanie odnomernogo nelineinogo dvizheniya v nasyschennoi zhidkostyu poristoi srede”, Matematicheskoe modelirovanie i chislennye metody. MGTU, 2018, no. 1, 21–34 | DOI

[17] Imomnazarov Kh. Kh., Tuichieva S. T., “Obratnaya zadacha dlya sistemy uravnenii porouprugosti”, Doklady AN Respubliki Uzbekistan, 2015, no. 2, 33–36