Mots-clés : torsion problem
@article{VTGU_2022_75_a6,
author = {D. A. Ivanychev},
title = {Boundary state method in solving torsion problems for transversely isotropic bodies of revolution},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {73--86},
year = {2022},
number = {75},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/}
}
TY - JOUR AU - D. A. Ivanychev TI - Boundary state method in solving torsion problems for transversely isotropic bodies of revolution JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 73 EP - 86 IS - 75 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/ LA - ru ID - VTGU_2022_75_a6 ER -
%0 Journal Article %A D. A. Ivanychev %T Boundary state method in solving torsion problems for transversely isotropic bodies of revolution %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 73-86 %N 75 %U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/ %G ru %F VTGU_2022_75_a6
D. A. Ivanychev. Boundary state method in solving torsion problems for transversely isotropic bodies of revolution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 73-86. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/
[1] Akhmetov N. K., Mamedova T. B., “Asimptoticheskoe povedenie resheniya zadachi krucheniya radialno-neodnorodnoi transversalno-izotropnoi sfericheskoi obolochki”, Vestnik DGTU, 11:4(55) (2011), 455–461 | MR
[2] Mironov B. G., Mitrofanova T. V., “Deformirovannoe sostoyanie translyatsionnoanizotropnykh tel pri kruchenii”, Vestnik ChGPU im. I.Ya. Yakovleva, 2011, no. 4(72)-1, 57–60
[3] Sokolova M. Yu., Rudakov V. V., “Konechnye deformatsii sploshnogo tsilindra iz neszhimaemogo uprugogo anizotropnogo materiala”, Izvestiya TulGU. Tekhnicheskie nauki, 2016, no. 11-1, 253–266
[4] Sokolova M. Yu., Khristich D. V., Chikov V. S., “Kruchenie sploshnogo tsilindra iz nelineinogo tsilindricheski ortotropnogo materiala”, Izvestiya TulGU. Tekhnicheskie nauki, 2017, no. 10, 156–164
[5] Vasilev A. S., Sadyrin E. V., Fedotov I. A., “Kontaktnaya zadacha o kruchenii kruglym shtampom transversalno-izotropnogo uprugogo poluprostranstva s neodnorodnym transversalno-izotropnym pokrytiem”, Vestnik DGTU, 2013, no. 1–2(70–71), 25–34
[6] Mironov B. G., Derevyannykh E. A., “Ob obschikh sootnosheniyakh teorii krucheniya anizotropnykh sterzhnei”, Vestnik ChGPU im. I.Ya. Yakovleva, 2012, no. 4 (76), 108–112
[7] Banschikova I. A., Tsvelodub I. Yu., Petrov D. M., “Deformirovanie elementov konstruktsii iz splavov s ponizhennoi soprotivlyaemostyu deformatsiyam polzuchesti v sdvigovom napravlenii”, Uchenye zapiski kazanskogo universiteta. Fiziko-matematicheskie nauki, 157, no. 3, 2015, 34–41 | MR
[8] Nurimbetov A. U., “Napryazhenno-deformirovannoe sostoyanie sloistykh kompozitsionnykh sterzhnei i lopatok pri kruchenii”, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2015, no. 1, 59–66
[9] Ivanychev D. A., “Metod granichnykh sostoyanii v reshenii pervoi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 66, 96–111 | DOI | MR
[10] Ivanychev D. A., “Metod granichnykh sostoyanii v reshenii vtoroi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 45–60 | DOI | MR
[11] Ivanychev D. A., “Reshenie kontaktnoi zadachi teorii uprugosti dlya anizotropnykh tel vrascheniya s massovymi silami”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 2, 49–62 | DOI
[12] Aleksandrov A. Ya., Solovev Yu. I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, M., 1978, 464 pp.
[13] Penkov V. B., Penkov V. V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 115–137 | MR
[14] Satalkina L. V., “Naraschivanie bazisa prostranstva sostoyanii pri zhestkikh ogranicheniyakh k energoemkosti vychislenii”, Sbornik tezisov dokladov nauchnoi konferentsii studentov i aspirantov Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, 130–131
[15] Ivanychev D. A., “Solving the mixed problem of elasticity theory with mass forces for transversal-isotropic body”, Proceedings - 2020 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2020, 56–61 | MR
[16] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, 2-e izd., Nauka, M., 1977, 416 pp.
[17] Levina L. V., Novikova O. S., Penkov V. B., “Polnoparametricheskoe reshenie zadachi teorii uprugosti odnosvyaznogo ogranichennogo tela”, Vestnik LGTU, 2016, no. 2 (28), 16–24 | MR
[18] Ivanychev D. A., Levina E.Yu., Abdullakh L. S., Glazkova Yu.A., “The method of boundary states in problems of torsion of anisotropic cylinders of finite length”, International Transaction Journal of Engineering, Management, Applied Sciences Technologies, 10:2 (2019), 183–191 | DOI