Boundary state method in solving torsion problems for transversely isotropic bodies of revolution
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this work is to develop the method of boundary states for the class of torsion problems as applied to transversely isotropic elastic bodies of revolution. Efforts, displacements, or a combination of both are used as twisting conditions at the border. Proceeding from the general solution to the problem of cross section warping, the basis of the space of internal states is formed. The search for an internal state is reduced to the study of the boundary state isomorphic to it. The solution is a Fourier series. The proposed technique is implemented in solving the first main problem for a body in the form of a truncated cone; the second main problem for a circular cylinder; and the main mixed problem for a non-canonical body of revolution. The solution was verified and the calculation accuracy was assessed. The obtained characteristics of the elastic field have a polynomial form. The elastic field in each problem satisfies the specified boundary conditions in the form of their distribution over the surface and does not satisfy them only in the integral sense.
Keywords: boundary state method, transversely isotropic materials, state space, boundary value problems.
Mots-clés : torsion problem
@article{VTGU_2022_75_a6,
     author = {D. A. Ivanychev},
     title = {Boundary state method in solving torsion problems for transversely isotropic bodies of revolution},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {73--86},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/}
}
TY  - JOUR
AU  - D. A. Ivanychev
TI  - Boundary state method in solving torsion problems for transversely isotropic bodies of revolution
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 73
EP  - 86
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/
LA  - ru
ID  - VTGU_2022_75_a6
ER  - 
%0 Journal Article
%A D. A. Ivanychev
%T Boundary state method in solving torsion problems for transversely isotropic bodies of revolution
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 73-86
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/
%G ru
%F VTGU_2022_75_a6
D. A. Ivanychev. Boundary state method in solving torsion problems for transversely isotropic bodies of revolution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 73-86. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a6/

[1] Akhmetov N. K., Mamedova T. B., “Asimptoticheskoe povedenie resheniya zadachi krucheniya radialno-neodnorodnoi transversalno-izotropnoi sfericheskoi obolochki”, Vestnik DGTU, 11:4(55) (2011), 455–461 | MR

[2] Mironov B. G., Mitrofanova T. V., “Deformirovannoe sostoyanie translyatsionnoanizotropnykh tel pri kruchenii”, Vestnik ChGPU im. I.Ya. Yakovleva, 2011, no. 4(72)-1, 57–60

[3] Sokolova M. Yu., Rudakov V. V., “Konechnye deformatsii sploshnogo tsilindra iz neszhimaemogo uprugogo anizotropnogo materiala”, Izvestiya TulGU. Tekhnicheskie nauki, 2016, no. 11-1, 253–266

[4] Sokolova M. Yu., Khristich D. V., Chikov V. S., “Kruchenie sploshnogo tsilindra iz nelineinogo tsilindricheski ortotropnogo materiala”, Izvestiya TulGU. Tekhnicheskie nauki, 2017, no. 10, 156–164

[5] Vasilev A. S., Sadyrin E. V., Fedotov I. A., “Kontaktnaya zadacha o kruchenii kruglym shtampom transversalno-izotropnogo uprugogo poluprostranstva s neodnorodnym transversalno-izotropnym pokrytiem”, Vestnik DGTU, 2013, no. 1–2(70–71), 25–34

[6] Mironov B. G., Derevyannykh E. A., “Ob obschikh sootnosheniyakh teorii krucheniya anizotropnykh sterzhnei”, Vestnik ChGPU im. I.Ya. Yakovleva, 2012, no. 4 (76), 108–112

[7] Banschikova I. A., Tsvelodub I. Yu., Petrov D. M., “Deformirovanie elementov konstruktsii iz splavov s ponizhennoi soprotivlyaemostyu deformatsiyam polzuchesti v sdvigovom napravlenii”, Uchenye zapiski kazanskogo universiteta. Fiziko-matematicheskie nauki, 157, no. 3, 2015, 34–41 | MR

[8] Nurimbetov A. U., “Napryazhenno-deformirovannoe sostoyanie sloistykh kompozitsionnykh sterzhnei i lopatok pri kruchenii”, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2015, no. 1, 59–66

[9] Ivanychev D. A., “Metod granichnykh sostoyanii v reshenii pervoi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 66, 96–111 | DOI | MR

[10] Ivanychev D. A., “Metod granichnykh sostoyanii v reshenii vtoroi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 45–60 | DOI | MR

[11] Ivanychev D. A., “Reshenie kontaktnoi zadachi teorii uprugosti dlya anizotropnykh tel vrascheniya s massovymi silami”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 2, 49–62 | DOI

[12] Aleksandrov A. Ya., Solovev Yu. I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, M., 1978, 464 pp.

[13] Penkov V. B., Penkov V. V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 115–137 | MR

[14] Satalkina L. V., “Naraschivanie bazisa prostranstva sostoyanii pri zhestkikh ogranicheniyakh k energoemkosti vychislenii”, Sbornik tezisov dokladov nauchnoi konferentsii studentov i aspirantov Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, 130–131

[15] Ivanychev D. A., “Solving the mixed problem of elasticity theory with mass forces for transversal-isotropic body”, Proceedings - 2020 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2020, 56–61 | MR

[16] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, 2-e izd., Nauka, M., 1977, 416 pp.

[17] Levina L. V., Novikova O. S., Penkov V. B., “Polnoparametricheskoe reshenie zadachi teorii uprugosti odnosvyaznogo ogranichennogo tela”, Vestnik LGTU, 2016, no. 2 (28), 16–24 | MR

[18] Ivanychev D. A., Levina E.Yu., Abdullakh L. S., Glazkova Yu.A., “The method of boundary states in problems of torsion of anisotropic cylinders of finite length”, International Transaction Journal of Engineering, Management, Applied Sciences Technologies, 10:2 (2019), 183–191 | DOI