Left-invariant para-Sasakian structure on the Heisenberg group
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 38-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Among the eight three-dimensional Thurston geometries, there is the Heisenberg group, the nilpotent Lie group of real 3$\times$3 matrices of a special form. It is known that this group has a left-invariant Sasakian structure. This article proves that there is also a paracontact metric structure on the Heisenberg group, which is also Sasakian. This group has a unique contact metric connection with skew-symmetric torsion, which is invariant under the group of automorphisms of the para-Sasakian structure. The discovered connection is proved to be a contact metric connection for any para-Sasakian structure. The concept of a connection compatible with the distribution is introduced. It is found that the Levi-Civita connection and the contact metric connection on the Heisenberg group endowed with a para-Sasakian structure are compatible with the contact distribution. Their orthogonal projections on this distribution determine the same truncated connection. It is proved that Levi-Civita contact geodesics and truncated geodesics coincide. It is found that contact geodesics are either straight lines lying in the contact planes or parabolas the orthogonal projections of which on the contact planes are straight lines. The results obtained in this article are also valid for the multidimensional Heisenberg group.
Mots-clés : paracontact structure, paracontact structure
Keywords: contact metric connection, connection compatible with a distribution, truncated connection, contact metric connection, connection compatible with a distribution, truncated connection.
@article{VTGU_2022_75_a3,
     author = {V. I. Pan'zhenskii and A. O. Rastrepina},
     title = {Left-invariant {para-Sasakian} structure on the {Heisenberg} group},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--51},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a3/}
}
TY  - JOUR
AU  - V. I. Pan'zhenskii
AU  - A. O. Rastrepina
TI  - Left-invariant para-Sasakian structure on the Heisenberg group
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 38
EP  - 51
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a3/
LA  - ru
ID  - VTGU_2022_75_a3
ER  - 
%0 Journal Article
%A V. I. Pan'zhenskii
%A A. O. Rastrepina
%T Left-invariant para-Sasakian structure on the Heisenberg group
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 38-51
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a3/
%G ru
%F VTGU_2022_75_a3
V. I. Pan'zhenskii; A. O. Rastrepina. Left-invariant para-Sasakian structure on the Heisenberg group. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 38-51. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a3/

[1] Vershik A. M., Fadeev L. D., “Lagranzheva mekhanika v invariantnom izlozhenii”, Problemy teoreticheskoi fiziki, Izdatelstvo LGU, L., 1975, 129–141

[2] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85

[3] Sachkov Yu. L., “Teoriya upravleniya na gruppakh Li”, Sovremennaya matematika. Fundamentalnye napravleniya, 26, 2007, 5–59 | DOI

[4] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and sub-Riemannian geometry, SISSA, Trieste, Italy, 2012, 179 pp. | MR

[5] Alvarez M. A., Rodriguez-Vallarte M. C., Salgado G., “Contact nilpotent Lie algebras”, Proceedings of the American Mathematical Society, 145:4 (2017), 1467–1474 | DOI | MR

[6] Gonzalez J. C., Chinea D., “Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p,1)”, Proceedings of the American Mathematical Society, 105:1 (1989), 173–184 | DOI | MR

[7] Binz E., Pods S., The Geometry of Heisenberg Groups, Mathematical Surveys and Monographs, 151, American Mathematical Society, Providence, R.I., 2008, 321 pp. | DOI | MR

[8] Boyer C. P., “The Sasakian geometry of the Heisenberg group”, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 52:3 (2009), 251–262 | MR

[9] Smolentsev N. K., “Levoinvariantnye para-sasakievy struktury na gruppakh Li”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 62, 27–37 | DOI

[10] Smolentsev N. K., Shagabudinova I. Yu., “O parasasakievykh strukturakh na pyatimernykh algebrakh Li”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 69, 37–52 | DOI | MR

[11] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 148 pp. | DOI | MR

[12] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013, 458 pp.

[13] Panzhensky V. I., Klimova T. R., “Contact metric connection on the Heisenberg group”, Russian Mathematics, 62:11 (2018), 45–52 | DOI | MR

[14] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, per. s nem. Yu.D. Burago, ed. V. A. Toponogov, Mir, M., 1971, 343 pp.