Variational simulation of the spectral problem
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 33-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ordinary fourth-order differential equation which is the zero approximation of the eigenvalue boundary problem is solved by the variational method to produce approximate formulas for eigenvalues. To obtain an explicit formula for eigenvalues, a transition is made from the differential problem to the variational problem in the Galerkin form. Calculating integrals in it gives a general formula for eigenvalues. The selection of functions satisfying certain boundary conditions yields approximate formulas suitable for the analysis of multiparameter dependencies. In particular, it is shown how the lowest eigenvalues are determined.
Mots-clés : simulation
Keywords: spectral problem, variation methods, formal asymptotic decomposition, eigenvalues, eigenfunctions.
@article{VTGU_2022_75_a2,
     author = {E. A. Molchanova},
     title = {Variational simulation of the spectral problem},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--37},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a2/}
}
TY  - JOUR
AU  - E. A. Molchanova
TI  - Variational simulation of the spectral problem
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 33
EP  - 37
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a2/
LA  - ru
ID  - VTGU_2022_75_a2
ER  - 
%0 Journal Article
%A E. A. Molchanova
%T Variational simulation of the spectral problem
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 33-37
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a2/
%G ru
%F VTGU_2022_75_a2
E. A. Molchanova. Variational simulation of the spectral problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 33-37. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a2/

[1] Goldenveizer A. L., “Asimpoticheskii metod v teorii obolochek”, Uspekhi mekhaniki, 5:1 (1982), 137–182 | MR

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp.

[3] Goldenveizer A. L., Lidskii B. V., Tovstik P. E., Svobodnye kolebaniya tonkikh uprugikh obolochek, Nauka, M., 1979, 384 pp. | MR

[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR

[5] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp.

[6] Tslaf L. Ya., Variatsionnoe ischislenie i integralnye uravneniya, Nauka, M., 1966, 176 pp.

[7] Smirnov V. I., Kurs vysshei matematiki, v. IV, Nauka, M., 1974, 336 pp. | MR