@article{VTGU_2022_75_a12,
author = {A. Yuldashev and Sh. T. Pirmatov},
title = {Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {150--165},
year = {2022},
number = {75},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a12/}
}
TY - JOUR AU - A. Yuldashev AU - Sh. T. Pirmatov TI - Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 150 EP - 165 IS - 75 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a12/ LA - ru ID - VTGU_2022_75_a12 ER -
%0 Journal Article %A A. Yuldashev %A Sh. T. Pirmatov %T Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 150-165 %N 75 %U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a12/ %G ru %F VTGU_2022_75_a12
A. Yuldashev; Sh. T. Pirmatov. Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 150-165. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a12/
[1] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972, 432 pp. | MR
[2] Kabulov V. K., Algoritmizatsiya v teorii uprugosti i deformatsionnoi teorii plastichnosti, Fan, Tashkent, 1966, 394 pp.
[3] Demidovich B. P., Maron I. A., Chislennye metody analiza, ed. B.P. Demidovich, Fizmatgiz, M., 1962
[4] Lyav A., Matematicheskaya teoriya uprugosti, ONTI-NKTL SSR, M.-L., 1935, 674 pp.
[5] Yuldashev A., Aliboev A., “Integrirovanie uravneniya dvizheniya gibkikh obolochek s uchetom sdviga i inertsii vrascheniya”, Sb. nauch. tr. TashPI «Chislennye metody», Tashkent, 1978, 50–60
[6] Berezin I. S.,Zhidkov N. P., Metody vychislenii, v. I-II, Fizmatgiz, 1959 | MR
[7] Aliboev A., Yuldashev A., “Integrirovanie uravneniya dvizheniya pryamougolnykh plastin metodom setok”, Sb. nauch. tr. TashPI «Avtomatizatsiya proektirovaniya», 237, Tashkent, 1978, 89–93
[8] Bate K. Yu., Metody konechnykh elementov, Fizmatlit, M., 2010, 1024 pp.
[9] Kornishin M. S., “Nekotorye voprosy primeneniya metoda konechnykh raznostei dlya resheniya kraevykh zadach teorii plastin”, Prikladnaya mekhanika, 9:3 (1963)
[10] Yuldashev A., Pirmatov Sh. T., Minarova N., “Uravnenie ravnovesiya gibkikh kruglykh plastin”, Austrian J. Technical and Natural Sciences, 2015, no. 3–4, 32–35
[11] Yuldashev A., Pirmatov Sh.T., “Algorithmization of solving dynamic edge problems of the theory of flexible rectangular plates”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 66, 143–157 | DOI | MR
[12] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SORAN, Novosibirsk, 2000, 262 pp.
[13] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988, 712 pp.
[14] Berikkhanova G. E., Zhumagulov B. T., Kanguzhin B. E., “Matematicheskaya model kolebanii paketa pryamougolnykh plastin s uchetom tochechnykh svyazei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 1(9), 72–86
[15] Bazarov M. B., Safarov I. I., Shokin Yu. I., Chislennoe modelirovanie kolebanii dissipativno odnorodnykh i neodnorodnykh mekhanicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 1996, 189 pp.
[16] Vyachkin E. S., Kaledin V. O., Reshetnikova E. V., Vyachkina E. A., Gileva A. E., “Razrabotka matematicheskoi modeli staticheskogo deformirovaniya sloistykh konstruktsii s neszhimaemymi sloyami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 55, 72–83 | DOI | MR