Simulation of gas aerodynamics and particle trajectories in the interaction of two opposing swirling flows
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 138-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an original geometry of a vortex chamber in which aerodynamics of a gas flow is simulated during the interaction of two opposing swirling flows in order to equalize the centrifugal forces in the central region of the apparatus as applied to the tasks of separating powders by fractional composition or intensifying heat and mass transfer in chemical reactors. Based on the results obtained, the distributions of the trajectories of motion of single particles are determined, based on the discrete-trajectory approach, and the reliability of the results obtained for the aerodynamics of swirling flow in the proposed geometry of the vortex chamber was shown. As a result of mathematical modeling of the dynamics of motion of a single heavy particle in a swirling flow, the influence of swirl on the quality of the particle classification process is shown; for example, an increase in swirl leads to a greater influence of the centrifugal force which picks up heavy particles and throws them to the peripheral sector. In addition, an increase in the centrifugal force leads to a displacement of the boundary particle size. However, since this work presents a laminar formulation of the problem, the difference will amount to tens of microns; when updating to the turbulent problem, the difference will already be calculated in units of microns.
Keywords: aerodynamics, numerical simulation, swirling flow, velocity, pressure, vortex chamber.
Mots-clés : particles
@article{VTGU_2022_75_a11,
     author = {R. R. Turubaev and A. V. Shvab},
     title = {Simulation of gas aerodynamics and particle trajectories in the interaction of two opposing swirling flows},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {138--149},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a11/}
}
TY  - JOUR
AU  - R. R. Turubaev
AU  - A. V. Shvab
TI  - Simulation of gas aerodynamics and particle trajectories in the interaction of two opposing swirling flows
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 138
EP  - 149
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a11/
LA  - ru
ID  - VTGU_2022_75_a11
ER  - 
%0 Journal Article
%A R. R. Turubaev
%A A. V. Shvab
%T Simulation of gas aerodynamics and particle trajectories in the interaction of two opposing swirling flows
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 138-149
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a11/
%G ru
%F VTGU_2022_75_a11
R. R. Turubaev; A. V. Shvab. Simulation of gas aerodynamics and particle trajectories in the interaction of two opposing swirling flows. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 138-149. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a11/

[1] Gupta A., Lilli D., Saired N., Zakruchennye potoki, Mir, M., 1987, 588 pp.

[2] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmalit, M., 2010

[3] Gropyanov A. V., Sitov N. N., Zhukova M. N., Poroshkovye materialy, uchebnoe posobie, VShTE SPbGUPTD, SPb., 2017, 74 pp.

[4] Ponomarev V. B., Raschet i proektirovanie oborudovaniya dlya vozdushnoi separatsii sypuchikh materialov, Izd-vo Ural. un-ta, Ekaterinburg, 2017, 96 pp.

[5] Turubaev R. R., Shvab A. V., “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98 | DOI | MR

[6] Alekseenko S. V., Okulov V. L., “Zakruchennye potoki v tekhnicheskikh prilozheniyakh (obzor)”, Teplofizika i aeromekhanika, 3:2 (1996), 101–138

[7] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp.

[8] Volkov K. N., Emelyanov V. N., Techenie gaza s chastitsami, Fizmatlit, M., 2008, 600 pp.

[9] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, v. 1, Mir, M., 1990, 384 pp.

[10] Chorin A. J., “Numerical solution of Navier-Stokes equation”, Math. Comput., 22 (1968), 745 | DOI | MR

[11] Peire R., Teilor T. D., Vychislitelnye metody resheniya zadach teploobmena i dinamiki zhidkosti, per. s. angl. pod red. V.D. Vilenskogo, Energoatomizdat, M., 1984, 351 pp.

[12] Patankar S. V., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 149 pp.

[13] Shvab A. V., Levchenko D. A., Turubaev R. R., “Modelirovanie aerodinamiki gaza pri vzaimodeistvii dvukh vstrechnykh zakruchennykh techenii”, Izv. vuzov. Fizika, 61:12–2 (2018), 134–139