Experimental mathematics and its use in number theory
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 23-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the work is to show the usefulness and features of experimental mathematics. Two number theory problems are solved using Wolfram Mathematica. The solution to the first problem has already been published. Congruencies of the form $F(A(p)) \equiv \varepsilon F(S) \pmod p$ by prime modulo $p$ are proved, whenever $A(p)$ is a polynomial respect $p$ with integer coefficients. Here, $F(n)$ is an $n$th Fibonacci number, $\varepsilon$ is $1$ or $-1$, and $S$ is a simple expression which contains only coefficients of the polynomial $A(p)$. The second problem examines the behavior of prime gaps. It is proved that if $G$ is the set of all prime gaps whose length is a multiple of $6$, the asymptotic density of $G$ is $1/2$. The first study is mentioned to compare the role of experimentation for these two tasks. In the first study, experiments were necessary — they helped, starting with known facts, to formulate chains of reliable guesses which turned out to be easy to prove. In the second study, it was not certain that the calculations being done could lead to anything. It was possible to arrive at the formulation of a theorem on the value of $1/2$ for the limit without experimental calculations. Only a conjecture about the formulation of the theorem is required. However, the experiments additionally led to a hypothesis on how the passage to the limit is implemented for the first $80$ million primes.
Keywords: experimental mathematics, Fibonacci numbers, prime gaps, Mathematica system.
@article{VTGU_2022_75_a1,
     author = {V. M. Zyuz'kov},
     title = {Experimental mathematics and its use in number theory},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {23--32},
     year = {2022},
     number = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_75_a1/}
}
TY  - JOUR
AU  - V. M. Zyuz'kov
TI  - Experimental mathematics and its use in number theory
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 23
EP  - 32
IS  - 75
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_75_a1/
LA  - ru
ID  - VTGU_2022_75_a1
ER  - 
%0 Journal Article
%A V. M. Zyuz'kov
%T Experimental mathematics and its use in number theory
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 23-32
%N 75
%U http://geodesic.mathdoc.fr/item/VTGU_2022_75_a1/
%G ru
%F VTGU_2022_75_a1
V. M. Zyuz'kov. Experimental mathematics and its use in number theory. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 75 (2022), pp. 23-32. http://geodesic.mathdoc.fr/item/VTGU_2022_75_a1/

[1] Wolfram S., A New Kind of Science, Wolfram Media, 2002, 1197 pp. | MR

[2] Wolfram Mathematica, http://www.wolfram.com/mathematica

[3] Poia D., Matematika i pravdopodobnye rassuzhdeniya, Nauka, M., 1975, 464 pp.

[4] Poia D., Matematicheskoe otkrytie: Reshenie zadach: osnovnye ponyatiya, izuchenie i prepodavanie, per. s angl. 3-e izd., KomKniga, M., 2010, 448 pp.

[5] Lakatos I., Dokazatelstva i oproverzheniya: Kak dokazyvayutsya teoremy, 2-e izd., Izd-vo LKI, M., 2010, 152 pp.

[6] Troitskii variant, 30 sentyabrya 2008, no. 13(839)

[7] Weisstein Eric W., Experimental Mathematics, From MathWorld - A Wolfram Web Resource https://mathworld.wolfram.com/ExperimentalMathematics.html

[8] Zyuzkov V. M., Eksperimenty v teorii chisel, Izd-vo NTL, Tomsk, 2019, 348 pp. http://vital.lib.tsu.rU/vital/access/manager/Repository/vtls:000658998

[9] Zyuzkov V. M., “Sravneniya s chislami Fibonachchi po prostomu modulyu”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 69 (2021), 15–21 | DOI | MR

[10] Weisstein Eric W., Prime Gaps, From MathWorld - A Wolfram Web Resource https://mathworld.wolfram.com/PrimeGaps.html

[11] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, Clarendon Press, Oxford, England, 2008, 642 pp. | MR

[12] Krendall R., Pomerane K., Prostye chisla. Kriptograficheskie i vychislitelnye aspekty, URSS; Knizhnyi dom «Librokom», M., 2011, 664 pp. | MR

[13] Gelfand A. O., Linnik Yu. V., Elementarnye metody v analiticheskoi teorii chisel, Fizmatgiz, M., 1962, 272 pp. | MR