A Couette-type flow with a perfect slip condition on a solid surface
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 79-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of a system of hydrodynamic equations, the unidirectional steady flow of a viscous incompressible fluid in a horizontal extended layer is studied. The solution to the governing equations is discovered in a distinguished class of functions that are linear in coordinates. The contact of the fluid with a lower hydrophobic solid boundary is described by the Navierslip condition. At the upper boundary of the layer, the temperature and pressure fields are assumed to be given, and a zero shear stress is specified. The system of boundary conditions is redefined due to the fact that all conditions for velocities are assigned as their derivatives. Zero flow rate is taken as an additional condition. The obtained exact solution to the boundary value problem is the only possible polynomial solution. The highest (eighth) degree of polynomials corresponds to a solution for background pressure. Analysis of the solution shows that it can describe a multiple stratification of kinetic-force fields. Since the analysis is carried out in a general form (without specifying physical constants that uniquely identify the fluid under study), the obtained results are applicable to viscous fluids of different nature.
Mots-clés : viscous fluid convection, exact solution, stagnation points
Keywords: shear flow, stratification of fields.
@article{VTGU_2021_74_a8,
     author = {N. V. Burmasheva and E. A. Larina and E. Yu. Prosviryakov},
     title = {A {Couette-type} flow with a perfect slip condition on a solid surface},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {79--94},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a8/}
}
TY  - JOUR
AU  - N. V. Burmasheva
AU  - E. A. Larina
AU  - E. Yu. Prosviryakov
TI  - A Couette-type flow with a perfect slip condition on a solid surface
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 79
EP  - 94
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a8/
LA  - ru
ID  - VTGU_2021_74_a8
ER  - 
%0 Journal Article
%A N. V. Burmasheva
%A E. A. Larina
%A E. Yu. Prosviryakov
%T A Couette-type flow with a perfect slip condition on a solid surface
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 79-94
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a8/
%G ru
%F VTGU_2021_74_a8
N. V. Burmasheva; E. A. Larina; E. Yu. Prosviryakov. A Couette-type flow with a perfect slip condition on a solid surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 79-94. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a8/

[1] Stepanova I.V., “Postroenie i analiz tochnogo resheniya uravnenii Oberbeka-Bussineska”, Zhurnal SFU. Matematika i fizika, 12:5 (2019), 590–597 | DOI | MR | Zbl

[2] Burmasheva N.V., Prosviryakov E.Yu., “On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect”, Journal of King Saud University - Science, 32:8 (2020), 3364–3371 | DOI | MR

[3] Burmasheva N.V., Prosviryakov E.Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:2 (2019), 341–360 | DOI | Zbl

[4] Vasenin I.M., Krainov A.Yu., Shakhtin A.A., Mazur R.L., Zernaev P.V., Chukanov M.V., “Matematicheskaya model i rezultaty chislennykh raschetov pereliva UF6 v prisutstvii mikrokolichestv legkikh primesei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2:10 (2010), 53–59

[5] Goncharova O.N., “Modelirovanie mikrokonvektsii v zhidkosti, zaklyuchennoi mezhdu teploprovodnymi massivami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52:1 (2011), 84–91 | MR | Zbl

[6] Gershuni G.Z., Zhukhovitskii E.M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[7] Brutyan M.A., “Odnonapravlennye techeniya prostykh zhidkostei i ikh gazodinamicheskoe opisanie”, Mekhanika kompozitsionnykh materialov i konstruktsii, 1:2 (1995), 83–90 | MR

[8] Burmasheva N.V., Prosviryakov E.Yu., “Termokapillyarnaya konvektsiya vertikalno zavikhrennoi zhidkosti”, Teoreticheskie osnovy khimicheskoi tekhnologii, 54:1 (2020), 114–124 | DOI | MR

[9] Zhuchkov V.I., Raeva V.M., Frolkova A.K., “Issledovanie selektivnosti binarnykh agentov metodom gazozhidkostnoi khromatografii”, Teoreticheskie osnovy khimicheskoi tekhnologii, 54:1 (2020), 69–74 | DOI

[10] Spurk J.H., Aksel N., “Laminar unidirectional flows”, Fluid Mechanics, Springer, Cham, 2020 | DOI | MR

[11] Wichterle K., Vecer M., “The steady unidirectional flow”, Transport and Surface Phenomena, Chapter Twelve, Elsivier, 2020 | DOI

[12] Couette M., “Etudes sur le frottement des liquides”, Ann. Chim. Phys., 21:6 (1890), 433–510

[13] Poiseuille J., “Recherches experimental sur le mouvement des liquides dans les tubes de tres-petits diametres”, Comptes Rendus, 9 (1844), 1–122

[14] Naumov I.V., Mikkelsen R.F., Okulov V.L., “Formirovanie zastoinoi zony na osi zamknutogo zakruchennogo techeniya”, Teplofizika i aeromekhanika, 21:6 (2014), 799–802

[15] Alekseenko S.V., Kuibin P.A., Okulov V.L., Vvedenie v teoriyu kontsentrirovannykh vikhrei, Institut teplofiziki im. S.S. Kutateladze, Novosibirsk, 2003, 503 pp. | MR

[16] Birikh R.V., “O termokapillyarnoi konvektsii v gorizontalnom sloe zhidkosti”, PMTF, 1966, no. 3, 69–72

[17] Ostroumov G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi, Gos. izd-vo tekhniko-teoret. lit-ry, M., 1952, 256 pp. | MR

[18] Gebkhart B., Dzhaluriya I., Makhadzhan R., Samakiya B., Svobodnokonvektivnye techeniya, teplo- i massoobmen, v 2 kn., v. 1, Mir, M., 1991, 678 pp.

[19] Burmasheva N.V., Prosviryakov E.Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:3 (2020), 528–541 | DOI | Zbl

[20] Bulicek M., Malek J., “Internal flows of incompressible fluids subject to stick-slip boundary conditions”, Vietnam J. Math., 45 (2017), 207–220 | DOI | MR | Zbl

[21] Zhang S., Huan J., Song H., Liu X., Wei Y.G., “Plastic effect on the sliding inception between a cylinder and a rigid flat”, Acta Mech. Solida Sin., 32 (2019), 1–16 | DOI

[22] Chen Y., O'Shaughnessy T.J., Kamimori G.H., Horner D.M., Egnoto M.J., Bagchi A., “Role of interfacial conditions on blast overpressure propagation into the brain”, Front. Neurol., 11 (2020), 323 | DOI

[23] Ekiel-Jezewska M.L., Wajnryb E., “Motion of a particle with stick-slip boundary conditions towards a flat interface: hard wall or free surface”, Physicochem. Probl. Miner. Process., 54:1 (2018), 203–209 | DOI

[24] Koshoridze S.I., Levin Yu.K., “Obrazovanie puzyrka na gidrofobnoi poverkhnosti”, Zhurnal tekhnicheskoi fiziki, 90:6 (2020), 886–890 | DOI

[25] Varughese S.M., Bhandaru N., “Durability of submerged hydrophobic surfaces”, Soft Matter, 16 (2020), 1692–1701 | DOI

[26] Li J., Wang W., Mei X., Pan A., “Effects of surface wettability on the dewetting performance of hydrophobic surfaces”, ACS Omega, 5 (2020), 28776–28783 | DOI

[27] Qian T.Z., Wang X.P., Sheng P., “Molecula scale contact line hydrodynamics of immiscible fluids”, Phys. Rev. E, 68 (2003), 016306 | DOI

[28] Hoomana K., Hooman F., Famouri M., “Scaling effects for flow in micro-channels: Variable property, viscous heating, velocity slip, and temperature jump”, Int.Communications in Heat and Mass Transfer, 36 (2009), 192–196 | DOI

[29] Neto C., Evans D., Craig V.S.J., Bonaccurso E., “Boundary slip in Newtonian liquids: a review of experimental studies”, Reports on Progress in Physics, 39 (2005), 2859–2897 | DOI

[30] Bahrami M., Tamayol A., Taheri P., “Slip-flow pressure drop in microchannels of general cross section”, J. Fluids Engineering, 131 (2009), 031201 | DOI

[31] Shvarts K.G., Shvarts Yu.A., “Ustoichivost advektivnogo techeniya v gorizontalnom sloe neszhimaemoi zhidkosti pri nalichii usloviya proskalzyvaniya”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2020, no. 1, 33–44 | DOI

[32] Eizhkel Ya., “Proskalzyvanie zhidkosti v mikro- i nanoflyuidike: nedavnie issledovaniya i ikh vozmozhnye primeneniya”, Nauchnye trudy NIPI Neftegaz GNKAR, 2010, no. 4, 62–66 | DOI

[33] Borzenko E.I., Dyakova O.A., Shrager G.R., “Issledovanie yavleniya proskalzyvaniya v sluchae techeniya vyazkoi zhidkosti v izognutom kanale”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 2(28), 35–44

[34] Shelukhin V.V., Khristenko U.A. Ob odnom uslovii proskalzyvaniya dlya uravnenii vyazkoi zhidkosti, Prikladnaya mekhanika i tekhnicheskaya fizika, 54:5 (2013), 101–109 | Zbl

[35] Andreev V.K., Bekezhanova V.B., Efimova M.V., Ryzhkov I.I., Stepanova I.V., “Neklassicheskie modeli konvektsii: tochnye resheniya i ikh ustoichivost”, Vychislitelnye tekhnologii, 14:6 (2009), 5–18 | Zbl

[36] Stepanova I.V., “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Applied Mathematics and Computation, 343 (2019), 57–66 | DOI | MR | Zbl

[37] Burmasheva N.V., Larina E.A., Prosviryakov E.Yu., “Unidirectional convective flows of a viscous incompressible fluid with slippage in a closed layer”, AIP Conference Proceedings, 2176 (2019), 030023 | DOI

[38] Burmasheva N.V., Prosviryakov E.Yu., “Tochnoe reshenie uravnenii Nave-Stoksa, opisyvayuschee prostranstvenno neodnorodnye techeniya vraschayuscheisya zhidkosti”, Trudy Instituta matematiki i mekhaniki UrO RAN, 26, no. 2, 2020, 79–87 | DOI | MR

[39] Burmasheva N.V., Prosviryakov E.Yu., “Klass tochnykh reshenii dlya dvumernykh uravnenii geofizicheskoi gidrodinamiki s dvumya parametrami Koriolisa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Matematika», 32 (2020), 33–48 | DOI | MR | Zbl

[40] Baranovskii E.S., Artemov M.A., “O statsionarnom techenii zhidkostei vtorogo poryadka v kanale”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 13:4 (2017), 342–353 | DOI | MR

[41] Lin C.C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1 (1958), 391–395 | DOI | MR | Zbl

[42] Sidorov A.F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, PMTF, 1989, no. 2, 34–40

[43] Aristov S.N., Vikhrevye techeniya v tonkikh sloyakh zhidkosti, avtoref. ... dis. dokt. fiz.-mat. nauk, Vladivostok, 1990

[44] Burmasheva N.V., Prosviryakov E.Yu., “Krupnomasshtabnaya sloistaya statsionarnaya konvektsiya vyazkoi neszhimaemoi zhidkosti pod deistviem kasatelnykh napryazhenii na verkhnei granitse. Issledovanie polya skorostei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 180–196 | DOI

[45] Shtern V., Counterflows. Paradoxical fluid mechanics phenomena, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[46] Pavlenko A.M., Zanin B.Yu., Katasonov M.M., Zverkov I.D., “Preobrazovanie struktury otryvnogo techeniya s pomoschyu lokalnogo vozdeistviya”, Teplofizika i aeromekhanika, 17:1 (2010), 17–22 | MR