@article{VTGU_2021_74_a4,
author = {E. H. Khalilov},
title = {Investigation of an approximate solution of some classes of surface integral equations of the first kind},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {43--54},
year = {2021},
number = {74},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/}
}
TY - JOUR AU - E. H. Khalilov TI - Investigation of an approximate solution of some classes of surface integral equations of the first kind JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 43 EP - 54 IS - 74 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/ LA - ru ID - VTGU_2021_74_a4 ER -
%0 Journal Article %A E. H. Khalilov %T Investigation of an approximate solution of some classes of surface integral equations of the first kind %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 43-54 %N 74 %U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/ %G ru %F VTGU_2021_74_a4
E. H. Khalilov. Investigation of an approximate solution of some classes of surface integral equations of the first kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 43-54. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/
[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR
[2] Davies P.J., Duncan D.B., “Numerical approximation of first kind Volterra convolution integral equations with discontinuous kernels”, Journal Integral Equations Applications, 29:1 (2017), 41–73 | DOI | MR | Zbl
[3] Giroire J., Nedelec J.C., “Numerical solution of an exterior Neumann problem using a double layer potential”, Mathematics of Computation, 32 (1978), 973–990 | DOI | MR | Zbl
[4] Hsiao G.C., Wendland W., “A finite element method for some integral equations of the first kind”, Journal of Mathematical Analysis and Applications, 58 (1977), 449–481 | DOI | MR | Zbl
[5] Kashirin A.A., Smagin S.I., “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:8 (2012), 1492–1505 | MR | Zbl
[6] Polishchuk O.D., “Finite element approximations in projection methods for solution of some Fredholm integral equation of the first kind”, Mathematical Modeling and Computing, 5:1 (2018), 74–87 | DOI
[7] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 527 pp. | MR
[8] Khalilov E.G., “Obosnovanie metoda kollokatsii dlya odnogo klassa poverkhnostnykh integralnykh uravnenii”, Matematicheskie zametki, 107:4 (2020), 604–622 | MR | Zbl
[9] Khalilov E.H., “Cubic formula for class of weakly singular surface integrals”, Proceedings of IMM of NAS of Azerbaijan, 39:47 (2013), 69–76 | MR | Zbl
[10] Khalilov E.H., “On an approximate solution of a class of surface singular integral equations of the first kind”, Georgian Mathematical Journal, 27:1 (2020), 97–102 | DOI | MR | Zbl
[11] Khalilov E.G., “O priblizhennom reshenii odnogo klassa granichnykh integralnykh uravnenii pervogo roda”, Differentsialnye uravneniya, 52:9 (2016), 1277–1283 | Zbl
[12] Khalilov E.G., “Nekotorye svoistva operatora, porozhdennogo proizvodnoi akusticheskogo potentsiala dvoinogo sloya”, Sibirskii matematicheskii zhurnal, 55:3 (2014), 690–700 | MR | Zbl