Investigation of an approximate solution of some classes of surface integral equations of the first kind
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sequence is constructed that converges to an exact solution of a hypersingular integral equation of the first kind of the external Neumann boundary value problem for the Helmholtz equation, which is the boundary value of the solution of the external Neumann boundary value problem on the boundary of the domain. In addition, a sequence is constructed that converges to an exact solution of a weakly singular integral equation of the first kind of the external Dirichlet boundary value problem for the Helmholtz equation, which is the boundary value of the normal derivative of the solution of the external Dirichlet boundary value problem on the boundary of the domain.
Keywords: integral equation of the first kind, weakly singular integral equations, hypersingular integral equations, Helmholtz equation, exterior Neumann boundary-value problem, exterior Dirichlet boundary-value problem.
@article{VTGU_2021_74_a4,
     author = {E. H. Khalilov},
     title = {Investigation of an approximate solution of some classes of surface integral equations of the first kind},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {43--54},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/}
}
TY  - JOUR
AU  - E. H. Khalilov
TI  - Investigation of an approximate solution of some classes of surface integral equations of the first kind
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 43
EP  - 54
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/
LA  - ru
ID  - VTGU_2021_74_a4
ER  - 
%0 Journal Article
%A E. H. Khalilov
%T Investigation of an approximate solution of some classes of surface integral equations of the first kind
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 43-54
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/
%G ru
%F VTGU_2021_74_a4
E. H. Khalilov. Investigation of an approximate solution of some classes of surface integral equations of the first kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 43-54. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a4/

[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR

[2] Davies P.J., Duncan D.B., “Numerical approximation of first kind Volterra convolution integral equations with discontinuous kernels”, Journal Integral Equations Applications, 29:1 (2017), 41–73 | DOI | MR | Zbl

[3] Giroire J., Nedelec J.C., “Numerical solution of an exterior Neumann problem using a double layer potential”, Mathematics of Computation, 32 (1978), 973–990 | DOI | MR | Zbl

[4] Hsiao G.C., Wendland W., “A finite element method for some integral equations of the first kind”, Journal of Mathematical Analysis and Applications, 58 (1977), 449–481 | DOI | MR | Zbl

[5] Kashirin A.A., Smagin S.I., “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:8 (2012), 1492–1505 | MR | Zbl

[6] Polishchuk O.D., “Finite element approximations in projection methods for solution of some Fredholm integral equation of the first kind”, Mathematical Modeling and Computing, 5:1 (2018), 74–87 | DOI

[7] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 527 pp. | MR

[8] Khalilov E.G., “Obosnovanie metoda kollokatsii dlya odnogo klassa poverkhnostnykh integralnykh uravnenii”, Matematicheskie zametki, 107:4 (2020), 604–622 | MR | Zbl

[9] Khalilov E.H., “Cubic formula for class of weakly singular surface integrals”, Proceedings of IMM of NAS of Azerbaijan, 39:47 (2013), 69–76 | MR | Zbl

[10] Khalilov E.H., “On an approximate solution of a class of surface singular integral equations of the first kind”, Georgian Mathematical Journal, 27:1 (2020), 97–102 | DOI | MR | Zbl

[11] Khalilov E.G., “O priblizhennom reshenii odnogo klassa granichnykh integralnykh uravnenii pervogo roda”, Differentsialnye uravneniya, 52:9 (2016), 1277–1283 | Zbl

[12] Khalilov E.G., “Nekotorye svoistva operatora, porozhdennogo proizvodnoi akusticheskogo potentsiala dvoinogo sloya”, Sibirskii matematicheskii zhurnal, 55:3 (2014), 690–700 | MR | Zbl