Matrix representation of endomorphisms of primary groups of small ranks
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 30-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For endomorphism rings of finite primary Abelian groups of rank 2 and 3, generalized matrix rings isomorphic to them are constructed. In each of these matrix rings, necessary and sufficient conditions for the invertibility of matrices are found, as well as formulas for constructing the inverse matrix.
Keywords: primary group, endomorphism ring, generalized matrix ring
Mots-clés : inverse matrix.
@article{VTGU_2021_74_a3,
     author = {A. Yu. Stepanova and E. A. Timoshenko},
     title = {Matrix representation of endomorphisms of primary groups of small ranks},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {30--42},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a3/}
}
TY  - JOUR
AU  - A. Yu. Stepanova
AU  - E. A. Timoshenko
TI  - Matrix representation of endomorphisms of primary groups of small ranks
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 30
EP  - 42
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a3/
LA  - ru
ID  - VTGU_2021_74_a3
ER  - 
%0 Journal Article
%A A. Yu. Stepanova
%A E. A. Timoshenko
%T Matrix representation of endomorphisms of primary groups of small ranks
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 30-42
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a3/
%G ru
%F VTGU_2021_74_a3
A. Yu. Stepanova; E. A. Timoshenko. Matrix representation of endomorphisms of primary groups of small ranks. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 30-42. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a3/

[1] Morita K., “Duality for modules and its applications to the theory of rings with minimum condition”, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6 (1958), 83–142 | MR | Zbl

[2] Krylov P.A., Tuganbaev A.A., Koltsa formalnykh matrits i moduli nad nimi, MTsNMO, M., 2017 | MR

[3] Green E.L., “On the representation theory of rings in matrix form”, Pacific J. Math., 100:1 (1982), 123–138 | DOI | MR | Zbl

[4] Haghany A., Varadarajan K., “Study of modules over formal triangular matrix rings”, J. Pure Appl. Algebra, 147:1 (2000), 41–58 | DOI | MR | Zbl

[5] Krylov P.A., Tuganbaev A.A., “Formalnye matritsy i ikh opredeliteli”, Fundam. i prikl. matematika, 19:1 (2014), 65–119

[6] Krylov P.A., “Opredeliteli obobschennykh matrits poryadka 2”, Fundam. i prikl. matematika, 20:5 (2015), 95–112

[7] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, v. 1, M., 2003