Mots-clés : piecewise constant coefficients
@article{VTGU_2021_74_a2,
author = {A. V. Starchenko and M. A. Sednev and S. V. Pan'ko},
title = {An approximate analytical solution to the forward inhomogeneous {EIT} problem on the {2D} disk with allowance for the electrode contact impedance},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {19--29},
year = {2021},
number = {74},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/}
}
TY - JOUR AU - A. V. Starchenko AU - M. A. Sednev AU - S. V. Pan'ko TI - An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 19 EP - 29 IS - 74 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/ LA - ru ID - VTGU_2021_74_a2 ER -
%0 Journal Article %A A. V. Starchenko %A M. A. Sednev %A S. V. Pan'ko %T An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 19-29 %N 74 %U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/ %G ru %F VTGU_2021_74_a2
A. V. Starchenko; M. A. Sednev; S. V. Pan'ko. An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 19-29. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/
[1] Pekker Ya.S., Brazovskii K.S., Usov V.Yu. i dr., Elektroimpedansnaya tomografiya, NTL, Tomsk, 2004, 192 pp.
[2] Gulyaev Yu.V., Korzhenevskii A.V., Cherepenin V.A., “O vozmozhnosti ispolzovaniya elektroimpedansnoi kompyuternoi tomografii dlya diagnostiki porazheniya legkikh virusom COVID-19”, Zhurnal radioelektroniki, 2020, no. 5
[3] Pidcock M.K., Kuzuoglu M., Leblebicioglu K., “Analytic and semi-analytic solutions in electrical impedance tomography. I. Two-dimensional problems”, Physiol. Meas., 16:2 (1995), 77–90 | DOI
[4] Boyle A., Adler A., “Electrode models under shape deformation in electrical impedance tomography”, Journal of Physics: Conference Series, 224 (2010), 012051 | DOI
[5] Jehl M., Dedner A., Betcke T., Aristovich K., Klofkorn R., Holder D., “A fast parallel solver for the forward problem in electrical impedance tomography”, IEEE Trans Biomed Eng., 62:1 (2015), 126–137 | DOI
[6] Sherina E.S., Starchenko A.V., “Chislennoe modelirovanie zadachi elektroimpedansnoi tomografii i issledovanie podkhoda na osnove metoda konechnykh ob'emov”, Byulleten sibirskoi meditsiny, 13:4 (2014), 156–164
[7] Isaacson D., “Distinguishability of Conductivities by Electric Current Computed Tomography”, IEEE Transactions on medical imaging, MI-5:5 (1986), 91–95 | DOI
[8] Demidenko E., “An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances”, Physiol Meas., 32:9 (2011), 1453–1471 | DOI
[9] Borcea L., “Electric Impedance Tomography. Topical Review”, Inverse Problems, 18 (2002), R99–R136 | DOI | MR | Zbl
[10] Somersalo E., Cheney M., Isaacson D., “Existence and uniqueness for electrode models for electric current computed tomography”, SIAM J. Appl. Math., 52 (2002), 1023–40 | DOI | MR