An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approximate analytical solution of the potential distribution in a two-dimensional circle with a radially inhomogeneous conductivity is obtained for the boundary conditions of the full electrode model, which takes into account the contact resistance of the electrodes at a given current strength. The solution is obtained by separating variables and using Fourier series, for the coefficients of which it is necessary to solve a system of linear equations. The obtained solution was compared with an approximate analytical solution of a similar problem for a homogeneous disk and with the Neumann-Robin boundary conditions. A good agreement was obtained, the quality of which improved with an increase in the number of terms taken into account in the series.
Keywords: elliptic equation in a circle, complete electrode model with integro-differential boundary condition, Fourier series.
Mots-clés : piecewise constant coefficients
@article{VTGU_2021_74_a2,
     author = {A. V. Starchenko and M. A. Sednev and S. V. Pan'ko},
     title = {An approximate analytical solution to the forward inhomogeneous {EIT} problem on the {2D} disk with allowance for the electrode contact impedance},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {19--29},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/}
}
TY  - JOUR
AU  - A. V. Starchenko
AU  - M. A. Sednev
AU  - S. V. Pan'ko
TI  - An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 19
EP  - 29
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/
LA  - ru
ID  - VTGU_2021_74_a2
ER  - 
%0 Journal Article
%A A. V. Starchenko
%A M. A. Sednev
%A S. V. Pan'ko
%T An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 19-29
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/
%G ru
%F VTGU_2021_74_a2
A. V. Starchenko; M. A. Sednev; S. V. Pan'ko. An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 19-29. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a2/

[1] Pekker Ya.S., Brazovskii K.S., Usov V.Yu. i dr., Elektroimpedansnaya tomografiya, NTL, Tomsk, 2004, 192 pp.

[2] Gulyaev Yu.V., Korzhenevskii A.V., Cherepenin V.A., “O vozmozhnosti ispolzovaniya elektroimpedansnoi kompyuternoi tomografii dlya diagnostiki porazheniya legkikh virusom COVID-19”, Zhurnal radioelektroniki, 2020, no. 5

[3] Pidcock M.K., Kuzuoglu M., Leblebicioglu K., “Analytic and semi-analytic solutions in electrical impedance tomography. I. Two-dimensional problems”, Physiol. Meas., 16:2 (1995), 77–90 | DOI

[4] Boyle A., Adler A., “Electrode models under shape deformation in electrical impedance tomography”, Journal of Physics: Conference Series, 224 (2010), 012051 | DOI

[5] Jehl M., Dedner A., Betcke T., Aristovich K., Klofkorn R., Holder D., “A fast parallel solver for the forward problem in electrical impedance tomography”, IEEE Trans Biomed Eng., 62:1 (2015), 126–137 | DOI

[6] Sherina E.S., Starchenko A.V., “Chislennoe modelirovanie zadachi elektroimpedansnoi tomografii i issledovanie podkhoda na osnove metoda konechnykh ob'emov”, Byulleten sibirskoi meditsiny, 13:4 (2014), 156–164

[7] Isaacson D., “Distinguishability of Conductivities by Electric Current Computed Tomography”, IEEE Transactions on medical imaging, MI-5:5 (1986), 91–95 | DOI

[8] Demidenko E., “An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances”, Physiol Meas., 32:9 (2011), 1453–1471 | DOI

[9] Borcea L., “Electric Impedance Tomography. Topical Review”, Inverse Problems, 18 (2002), R99–R136 | DOI | MR | Zbl

[10] Somersalo E., Cheney M., Isaacson D., “Existence and uniqueness for electrode models for electric current computed tomography”, SIAM J. Appl. Math., 52 (2002), 1023–40 | DOI | MR