Mots-clés : structure
@article{VTGU_2021_74_a13,
author = {A. P. Khrustalev and V. V. Platov and N. I. Kakhidze and I. A. Zhukov and A. B. Vorozhtsov},
title = {Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {141--153},
year = {2021},
number = {74},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a13/}
}
TY - JOUR AU - A. P. Khrustalev AU - V. V. Platov AU - N. I. Kakhidze AU - I. A. Zhukov AU - A. B. Vorozhtsov TI - Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 141 EP - 153 IS - 74 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a13/ LA - ru ID - VTGU_2021_74_a13 ER -
%0 Journal Article %A A. P. Khrustalev %A V. V. Platov %A N. I. Kakhidze %A I. A. Zhukov %A A. B. Vorozhtsov %T Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 141-153 %N 74 %U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a13/ %G ru %F VTGU_2021_74_a13
A. P. Khrustalev; V. V. Platov; N. I. Kakhidze; I. A. Zhukov; A. B. Vorozhtsov. Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 141-153. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a13/
[1] Kawazoe M., Shibata T., Mukai T., Higashi K., “Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion”, Scripta Materialia, 36:6 (1997), 699–705 | DOI
[2] Jones R.H., “The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys”, JOM, 55:2 (2003), 42–46 | DOI
[3] Kannan C., Ramanujam R., “Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review”, Science and Technology of Materials, 30:2 (2018), 109–119 | DOI
[4] Meti V.K.V., Shirur S., Nampoothiri J., Ravi K.R., Siddhalingeshwar I.G., “Synthesis, characterization and mechanical properties of AA7075 based MMCs reinforced with TiB2 particles processed through ultrasound assisted in-situ casting technique”, Transactions of the Indian Institute of Metals, 71:4 (2018), 841–848 | DOI
[5] Basak A.K., Pramanik A., Prakash C., “Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression”, Materials Science and Engineering: A, 763 (2019), 138141, 1–9 | DOI
[6] Jafari H., Idris M.H., Ourdjini A., Abdul Kadir M.R., “An investigation on interfacial reaction between in-situ melted AZ91D magnesium alloy and ceramic shell mold during investment casting process”, Materials Chemistry and Physics, 138:2-3 (2013), 672–681 | DOI
[7] Tahamtan S., Halvaee A., Emamy M., Zabihi M.S., “Fabrication of Al/A206-Al2O3 nano/micro composite by combining ball milling and stir casting technology”, Materials Design, 49 (2013), 347–359 | DOI
[8] Hosseini N., Karimzadeh F., Abbasi M.H., Enayati M.H., “Tribological properties of A16061-A12O3 nanocomposite prepared by milling and hot pressing”, Materials Design, 31:10 (2010), 4777–4785 | DOI
[9] Adeosun S.O., Akpan E.I., Gbenebor O.P., Balogun S.A., “Ductility and hardness of chloride cleaned AA6011/SiCp composites”, Transactions of Nonferrous Metals Society of China, 26:2 (2016), 339–347 | DOI
[10] Goyal H., Mandal N., Roy H., Mitra S.K., Mondal B., “Multi response optimization for processing Al-SiCp composites: An approach towards enhancement of mechanical properties”, Transactions of the Indian Institute of Metals, 68:3 (2015), 453–463 | DOI
[11] Abdizadeh H., Baghchesara M.A., “Optimized parameters for enhanced properties in Al-B4C composite”, Arabian Journal for Science and Engineering, 43 (2018), 4475–4485 | DOI
[12] Khademian M., Alizadeh A., Abdollahi A., “Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method”, Transactions of the Indian Institute of Metals, 70:6 (2017), 1635–1646 | DOI
[13] Sun Z., Hashimoto H., Wang Q., Park Y., Abe T., “Synthesis of Al-Al3Ti composites using pulse discharge sintering process”, Materials Transactions, JIM, 41:5 (2000), 597–600 | DOI
[14] Akbari M.K., Baharvandi H.R., Shirvanimoghaddam K., “Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites”, Materials and Design, 66 (2015), 150–161 | DOI
[15] Katsarou L., Mounib M., Lefebvre W., Vorozhtsov S., Pavese M., Badini C., Molina-Aldareguia J.M., Jimenez C.C., Perez Prado M.T., Dieringa H., “Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring”, Materials Science and Engineering: A, 659 (2016), 84–92 | DOI
[16] Sreekumar V.M., Babu N.H., Eskin D.G., “Prospects of in-situ a-Al2O3 as an inoculant in aluminum: A feasibility study”, Journal of Materials Engineering and Performance, 26:9 (2017), 4166–4176 | DOI
[17] Dieringa H., “Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review”, Journal of Materials Science, 46:2 (2011), 289–306 | DOI
[18] Puga H., Costa S., Barbosa J., Ribeiro S., Prokic M., “Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy”, Journal of Materials Processing Technology, 211:11 (2011), 1729–1735 | DOI
[19] Kudryashova O.B., Eskin D.G., Khrustalev A.P., Vorozhtsov S.A., “Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates”, Russian Journal of Non-Ferrous Metals, 58:4 (2017), 427–433 | DOI
[20] Zhang F., Jacobi A.M., “Aluminum surface wettability changes by pool boiling of nanofluids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506 (2016), 438444 | DOI
[21] Lee S., Utsunomiya A., Akamatsu H., Neishi K., Furukawa M., Horita Z., Langdon T.G., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafinegrained Al-Mg alloys”, Acta Materialia, 50:3 (2002), 553–564 | DOI
[22] Filatov Y.A., Yelagin V.I., Zakharov V.V., “New Al-Mg-Sc alloys”, Materials Science and Engineering: A, 280:1 (2000), 97–101 | DOI
[23] Ahmad Z., “The properties and application of scandium-reinforced aluminum”, JOM, 55:2 (2003), 35–39 | DOI
[24] Krishnan B.P., Surappa M.K., Rohatgi P.K., “The UPAL process: A direct method of preparing cast aluminium alloy-graphite particle composites”, Journal of Materials Science, 16 (1981), 1209–1216 | DOI
[25] Javdani A., Pouyafar V., Ameli A., Volinsky A.A., “Blended powder semisolid forming of Al7075/Al2O3 composites: Investigation of micro structure and mechanical properties”, Materials Design, 109 (2016), 57–67 | DOI
[26] Cao X., Shi Q., Liu D., Feng Z., Liu Q., Chen G., “Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors”, Composites Part B, 139 (2018), 97–105 | DOI
[27] Singh R., Singh R., Dureja J.S., Farina I., Fabbrocino F., “Investigations for dimensional accuracy of Al alloy/Al-MMC developed by combining stir casting and ABS replica based investment casting”, Composites Part B: Engineering, 115 (2017), 203–208 | DOI
[28] Philofsky E., “Intermetallic formation in gold-aluminum systems”, Solid-State Electron, 13:10 (1970), 1391–1394 | DOI
[29] Dixit S., Kashyap S., Kailas S.V., Chattopadhya K., “Manufacturing of high strength aluminium composites reinforced with nano tungsten particles for electrical application and investigation on in-situ reaction during processing”, Journal of Alloys and Compounds, 767 (2018), 1072–1082 | DOI
[30] Promakhov V.V., Khmeleva M.G., Zhukov I.A., Platov V.V., Khrustalyov A.P., Vorozhtsov A.B., “Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties”, Metals, 9:1 (2019), 87, 1–9 | DOI
[31] Dieringa H., Katsarou L., Buzolin R., Szakacs G., Horstmann M., Wolff M., Mendis C., Vorozhtsov S., StJohn D., “Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability”, Metals, 7:10 (2017), 388, 1–13 | DOI
[32] Belov N.A., “Effect of eutectic phases on the fracture behavior of high-strength castable aluminum alloys”, Metal Science and Heat Treatment, 37:5-6 (1995), 237–242 | DOI
[33] Zhang Z., Chen D.L., “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites”, Materials Science and Engineering: A, 483–484 (2008), 148–152 | DOI
[34] Samal P., Vundavilli P.R., Meher A., Mahapatra M.M., “Recent progress in aluminum metal matrix composites: A review on 1055 processing, mechanical and wear properties”, Journal of Manufacturing Processes, 59 (2020), 131–152 | DOI
[35] Sreekumar V.M., Babu N.H., Eskin D.G., Fan Z., “Structure-property analysis of in-situ Al-MgAl2O4 metal matrix composites synthesized using ultrasonic cavitation”, Materials Science and Engineering: A, 628 (2015), 30–40 | DOI
[36] Ramakrishnan N., “An analytical study on strengthening of particulate reinforced metal matrix composites”, Acta Materialia, 44:1 (1996), 69–77 | DOI
[37] Khrustalyov A.P., Kozulin A.A., Zhukov I.A., Khmeleva M.G., Vorozhtsov A.B., Eskin D., Chankitmunkong S., Platov V.V., Vasilyev S.V., “Influence of titanium diboride particle size on structure and mechanical properties of an Al-Mg alloy”, Metals, 9:10 (2019), 1030, 1–14 | DOI