The structure and kinematics of a non-Newtonian fluid flow in a pipe with a sudden expansion
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 113-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with a problem of a laminar steady-state flow of a non-Newtonian incompressible fluid in a pipe with a sudden expansion. The flow is described by a system of dimensionless equations in terms of stream function and vorticity in a cylindrical coordinate system: an equation of vorticity transfer and Poisson's equation for stream function. Rheological properties of the medium are defined by the Ostwald-de Waele model. The problem is solved numerically. The false transient method is applied to obtain a steady-state solution to the problem. The equations are discretized in accordance with the finite-difference method based on the alternating direction scheme. The final system of equations is solved by the tridiagonal matrix algorithm. Flow structures of Newtonian, pseudoplastic, and dilatant fluids are found to include twodimensional flow zones before and after expansion plane. A recirculation region occurs in the inner corner. To assess the effect of the Reynolds number, expansion ratio, and power-law index on the lengths of the two-dimensional flow zones and recirculation region, the graphs are plotted over a wide range of variation in the parameters. Local pressure losses are presented as functions of the governing parameters of the problem.
Keywords: Ostwald-de Waele model, non-Newtonian fluid, axisymmetric flow, sudden expansion, Reynolds number, hydraulic resistance.
Mots-clés : recirculation zone
@article{VTGU_2021_74_a11,
     author = {D. A. Mamazova and K. E. Ryltseva and G. R. Shrager},
     title = {The structure and kinematics of a {non-Newtonian} fluid flow in a pipe with a sudden expansion},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {113--126},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a11/}
}
TY  - JOUR
AU  - D. A. Mamazova
AU  - K. E. Ryltseva
AU  - G. R. Shrager
TI  - The structure and kinematics of a non-Newtonian fluid flow in a pipe with a sudden expansion
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 113
EP  - 126
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a11/
LA  - ru
ID  - VTGU_2021_74_a11
ER  - 
%0 Journal Article
%A D. A. Mamazova
%A K. E. Ryltseva
%A G. R. Shrager
%T The structure and kinematics of a non-Newtonian fluid flow in a pipe with a sudden expansion
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 113-126
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a11/
%G ru
%F VTGU_2021_74_a11
D. A. Mamazova; K. E. Ryltseva; G. R. Shrager. The structure and kinematics of a non-Newtonian fluid flow in a pipe with a sudden expansion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 113-126. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a11/

[1] Habib M.A., Whitelaw J.H., “The calculation of turbulent flow in wide-angle $\setminus$ diffusers”, Nu merical Heat Transfer., 5:2 (1982), 145–164 | MR

[2] Macagno E.O, Hung T.K., “Computational and experimental study of a captive annular eddy”, Journal of Fluid Mechanics, 28:1 (1967), 43–63 | DOI

[3] Oliveira P.J., Pinho F.T., “Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions”, International Journal of Heat and Fluid Flow, 18:5 (1997), 518–529 | DOI

[4] Stieglmeier M., Tropea C., Weiser N., Nitsche W., “Experimental investigation of the flow through axisymmetric expansions”, Journal of Fluids Engineering, 111:4 (1989), 464–471 | DOI

[5] Back L.H., Roschke E.J., “Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion”, Journal of Applied Mechanics, 39:3 (1972), 677–681 | DOI

[6] Borzenko E.I., Ryltseva K.E., Shrager G.R., “Chislennoe issledovanie kharakteristik teche niya nenyutonovskoi zhidkosti v trube s vnezapnym suzheniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 58, 56–70 | MR

[7] Pienaar V.G., Viscous Flow Through Sudden Contractions, Dissertation, Cape Peninsula Uni versity of Technology, 2004

[8] Hammad K.J., Vradis G.C., Otugen M.V., “Laminar flow of a Herschel-Bulkley fluid over an axisymmetric sudden expansion”, Journal of Fluids Engineering, 123:3 (2001), 588–594 | DOI

[9] Hawa T., Rusak Z., “Viscous flow in a slightly asymmetric channel with a sudden expansion”, Physics of Fluids, 12:9 (2000), 2257–2267 | DOI | MR

[10] Hammad K.J., “Suddenly expanding recirculating and non-recirculating viscoplastic non-Newtonian flows”, Journal of Visualization, 18:4 (2015), 655–667 | DOI

[11] Forrest A.L., Fattah K.P., Mavinic D.S., Koch F.A., “Optimizing struvite production for phosphate recovery in WWTP”, Journal of Environmental Engineering, 134:5 (2008), 395–402 | DOI

[12] Shulman Z.P., Konvektivnyi teplomassoperenos reologicheski slozhnykh zhidkostei, Energiya, M., 1975, 352 pp.

[13] Neofytou P., Drikakis D., “Non-Newtonian flow instability in a channel with a sudden expansion”, Journal of Non-Newtonian Fluid Mechanics, 111:2-3 (2003), 127–150 | DOI | Zbl

[14] Ternik P., Marn J., Žunič Z., “Non-Newtonian fluid flow through a planar symmetric expansion: Shear-thickening fluids”, Journal of Non-Newtonian Fluid Mechanics, 135:2-3 (2006), 136–148 | DOI | Zbl

[15] Bell B.C., Surana K.S., “p-Version least squares finite element formulation for two-dimensional incompressible Newtonian and non-Newtonian non-isothermal fluid flow”, Computers Structures, 54:1 (1995), 83–96 | DOI | MR | Zbl

[16] Scott P.S., Mirza F.A., Vlachopoulos J., “A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions”, Computers Fluids, 14:4 (1986), 423–432 | DOI

[17] Badekas D., Knight D.D., “Eddy correlations for laminar axisymmetric sudden expansion flows”, Journal of Fluids Engineering, 114:1 (1992), 119121 | DOI

[18] Dagtekin I., Unsal M., “Numerical analysis of axisymmetric and planar sudden expansion flows for laminar regime”, International Journal for Numerical Methods in Fluids, 65:9 (2011), 1133–1144 | DOI | Zbl

[19] Mishra S., Jayaraman K., “Asymmetric flows in planar symmetric channels with large expansion ratio”, International Journal for Numerical Methods in Fluids, 38:10 (2002), 945–962 | DOI | Zbl

[20] Manica R., De Bortoli A., “Simulation of sudden expansion flows for power-law fluids”, Journal of Non-Newtonian Fluid Mechanics, 121:1 (2004), 35–40 | DOI | Zbl

[21] Pinho F.T., Oliveira P.J., Miranda J.P., “Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion”, International Journal of Heat and Fluid Flow, 24:5 (2003), 747–761 | DOI

[22] Ryltseva K.E., Neizotermicheskie techeniya reologicheski slozhnykh zhidkostei v kanalakh peremennogo secheniya, dissertatsiya, Natsionalnyi issledovatelskii Tomskii gosudarstvennyi universitet, Tomsk, 2020, 103 pp.

[23] Idelchik I.E., Spravochnik po gidravlicheskim soprotivleniyam, 3-e izd., ed. M.O. Shteinberg, Mashinostroenie, M., 1992, 672 pp.

[24] Tiu C., Boger D.V., Halmos A.L., “Generalized method for predicting loss coefficients in entrance region flows for inelastic fluids”, The Chemical Engineering Journal, 4:2 (1972), 113–117 | DOI