Asymptotic simulation of the spectral problem
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 12-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of a spectral problem containing a small parameter at the higher derivatives is investigated by an asymptotic method. The expected solution and its geometric parameters are presented as formal asymptotic decompositions. As a result, the original high-order differential task is reduced to a sequence of lower order tasks. Next, the zero approximation problem under the main boundary conditions is solved, the execution of which leads to a system of linear algebraic equations containing a spectral parameter. Equating to the zero of the determinant of the resulting system gives transcendent equations for eigenvalues. The asymptotic genesis of emerging transcendental equations allows asymptotic analysis to be applied to these equations. It helps to reveal the components of the equation that make the major contribution to the spectrum formation. Graphical solutions are used as leading considerations in this analysis. As a result of the asymptotic simulation, approximate formulas for the eigenvalues of the spectral problem have been obtained.
Mots-clés : simulation
Keywords: spectral problem, asymptotic methods, formal asymptotic expansion, eigenvalues, eigenfunctions.
@article{VTGU_2021_74_a1,
     author = {E. A. Molchanova},
     title = {Asymptotic simulation of the spectral problem},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {12--18},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a1/}
}
TY  - JOUR
AU  - E. A. Molchanova
TI  - Asymptotic simulation of the spectral problem
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 12
EP  - 18
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a1/
LA  - ru
ID  - VTGU_2021_74_a1
ER  - 
%0 Journal Article
%A E. A. Molchanova
%T Asymptotic simulation of the spectral problem
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 12-18
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a1/
%G ru
%F VTGU_2021_74_a1
E. A. Molchanova. Asymptotic simulation of the spectral problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 12-18. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a1/

[1] Andrianov I.V., Barantsev R.G., Manevich L.I., Asimptoticheskaya matematika i sinergetika: put k tselostnoi prostote, Editorial URSS, M., 2004, 304 pp.

[2] Argatov I.I., Vvedenie v asimptoticheskoe modelirovanie v mekhanike, Politekhnika, SPb., 2004, 302 pp.

[3] Bauer S.M., Smirnov A.L., Tovstik P.E., Filippov S.B., Asimpoticheskie metody v mekhanike tverdogo tela, Izhevsk, M., 2007, 356 pp.

[4] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp.

[5] Vazov V., Asimptoticheskie razlozheniya reshenii differentsialnykh uravnenii, Mir, M., 1968, 464 pp.

[6] Erdeii A., Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962, 128 pp.

[7] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR

[8] Goldenveizer A.L., Teoriya uprugikh tonkikh obolochek, M., 1953, 544 pp. | MR

[9] Goldenveizer A.L., “Asimpoticheskii metod v teorii obolochek”, Uspekhi mekhaniki, 5:1 (1982), 137–182 | MR

[10] Goldenveizer A.L., Lidskii B.V., Tovstik P.E., Svobodnye kolebaniya tonkikh uprugikh obolochek, M., 1979, 384 pp.

[11] Tovstik P.E., “Lokalnaya ustoichivost plastin i pologikh obolochek na uprugom osnovanii”, Izv. RAN: Mekhanika tverdogo tela, 2005, no. 1, 147–160 | MR

[12] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990, 528 pp.

[13] Fedoryuk M.V., Asimptotika: Integraly i ryady, Nauka, M., 1987, 544 pp. | MR

[14] Babakov I.M., Teoriya kolebanii, Nauka, M., 1968, 560 pp.