Design optimization for an unmanned drone frame
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 71-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Designing of a drone frame is presented in this paper. The main goal is to develop the optimal drone frame geometry. The optimization criterion represents mass minimization along with ensuring the required stiffness. Another intention is to use cheap materials and simple manufacturing technologies. The design process consists of three steps. The first step is engineering of a composite material, which is a three-layer sandwich panel. A series of three-point bending experiments are carried out for material samples. The optimality criterion takes into account both physical and economic features of the material. In the final scheme the outer layers are made of carbon and basalt fabrics, which are impregnated with resin, and a specific non-woven material is used as filler. The second step is the initial design. Dimensions are specified for design purposes. The third step is the optimization process. The finite element model of the frame is developed. The drone weight and the lift forces serve as applied loads. The optimization is implemented by removing material from unloaded areas of the structure. The Nelder-Mead (simplex) method with varying geometric parameters of the structure is used. As a result of the optimization process, the mass of the initial structure is reduced by 25.6 percent.
Keywords: unmanned aerial vehicle, optimization, composite material, frame.
@article{VTGU_2021_73_a6,
     author = {M. S. Pavlov and A. K. Karavatskiy and K. V. Kostyushin and K. K. Ismailov and N. O. Kostyushina and S. A. Orlov},
     title = {Design optimization for an unmanned drone frame},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {71--80},
     year = {2021},
     number = {73},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_73_a6/}
}
TY  - JOUR
AU  - M. S. Pavlov
AU  - A. K. Karavatskiy
AU  - K. V. Kostyushin
AU  - K. K. Ismailov
AU  - N. O. Kostyushina
AU  - S. A. Orlov
TI  - Design optimization for an unmanned drone frame
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 71
EP  - 80
IS  - 73
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_73_a6/
LA  - ru
ID  - VTGU_2021_73_a6
ER  - 
%0 Journal Article
%A M. S. Pavlov
%A A. K. Karavatskiy
%A K. V. Kostyushin
%A K. K. Ismailov
%A N. O. Kostyushina
%A S. A. Orlov
%T Design optimization for an unmanned drone frame
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 71-80
%N 73
%U http://geodesic.mathdoc.fr/item/VTGU_2021_73_a6/
%G ru
%F VTGU_2021_73_a6
M. S. Pavlov; A. K. Karavatskiy; K. V. Kostyushin; K. K. Ismailov; N. O. Kostyushina; S. A. Orlov. Design optimization for an unmanned drone frame. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 71-80. http://geodesic.mathdoc.fr/item/VTGU_2021_73_a6/

[1] Negrello F., Silvestri P., Lucifredi A., Guerrero J. E., Bottaro A., “Preliminary design of a mechanism for flapping flight-durability analysis and vibration modes”, 11th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2014/MFPT 2014, 2014, 1–11

[2] Coulombe C., Gamache J., Mohebbi A., Chouinard U., Achiche S., “Applying robust design methodology to a quadrotor drone”, Proceedings of the 21st International Conference on Engineering Design, v. 4, 2017, 395–404

[3] Henderson L., Kuester F., “Adaptive design and optimization of a shape-changing drone”, 2018 IEEE Aerospace Conference, 2018, 1–12 | DOI

[4] Siller U., Kroger G., Moser T., Hediger S., “Towards a highly efficient small scale turboshaft engine: Part II – Aero-mechanical turbine design and optimization”, Proceedings of the ASME Turbo Expo 2014 : Turbine Technical Conference and Exposition, v. 2B, Turbomachinery, 2014, V02BT45A014 | DOI

[5] Nelder J. A., Mead R., “A simplex method for function minimization”, Computer Journal, 7:4 (1965), 308–313 | DOI | MR | Zbl