Mots-clés : random perturbations
@article{VTGU_2021_73_a1,
author = {E. A. Mikishanina},
title = {Investigation of the influence of random perturbations on the dynamics of the system in the {Suslov} problem},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {17--29},
year = {2021},
number = {73},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/}
}
TY - JOUR AU - E. A. Mikishanina TI - Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 17 EP - 29 IS - 73 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/ LA - ru ID - VTGU_2021_73_a1 ER -
%0 Journal Article %A E. A. Mikishanina %T Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 17-29 %N 73 %U http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/ %G ru %F VTGU_2021_73_a1
E. A. Mikishanina. Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 17-29. http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/
[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M., 1946
[2] Vagner V. V., “Geometricheskaya interpretatsiya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektornomu i tenzornomu analizu, 1941, no. 5, 301–327 | MR | Zbl
[3] Ifraimov S. V., Kuleshov A. S., “Ob analogii mezhdu zadachei Suslova i zadachei o dvizhenii sanei Chaplygina po sfere”, Sovremennye problemy matematiki i mekhaniki, 7, 2013, 53–60
[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl
[5] Borisov A. V., Mikishanina E. A., “Two nonholonomic chaotic systems. Part I. On the Suslov problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322 | DOI | MR | Zbl
[6] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dinamika zadachi Suslova v pole sily tyazhesti: revers i strannye attraktory”, Nelineinaya dinamika, 12:2 (2016), 263–287 | MR
[7] Kozlova Z. P., “K zadache Suslova”, MTT, 1989, no. 1, 13–16
[8] Fernandez O. E., Bloch A. M., Zenkov D. V., “The geometry and integrability of the Suslov problem”, J. Math. Phys., 55:11 (2014), 112704, 14 pp. | DOI | MR | Zbl
[9] Arnold L., Stochastic Differential Equation, Wiley, New York, 1974 | MR
[10] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vved. v teoriyu i pril., per. s angl. N.I. Korolevoi, A.I. Matasova, ed. V. B. Kolmanovskii, Mir-AST, M., 2003, 406 pp.
[11] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: Teoriya i praktika chislennogo resheniya, SPbGPU, SPb., 2009, 767 pp.
[12] Kuznetsov D. F., Metody chislennogo modelirovaniya reshenii sistem stokhasticheskikh differentsialnykh uravnenii Ito v zadachakh mekhaniki, dis. ... kand. fiz.-mat.nauk, SPbGTU, SPb., 1996 | MR
[13] Kuznetsov D. F., “K probleme chislennogo modelirovaniya stokhasticheskikh sistem”, Vestnik molodykh uchenykh. Prikladnaya matematika i mekhanika, 1999, no. 2
[14] Kloeden P. E., Platen E., Schurz H., Numerical Solution of SDE Through Computer Experiments, Springer-Verlag, Berlin, 1994, 292 pp. | MR | Zbl
[15] Chang S. S., “Numerical solution of stochastic differential equations with constant diffusion coefficients”, Math. Comput., 49 (1987), 523–542 | DOI | MR | Zbl
[16] Kulchitskii O. Yu., Kuznetsov D. F., “Unifitsirovannoe razlozhenie Teilora-Ito”, Veroyatnost i statistika, Zapiski nauchnykh seminarov POMI im. V. A. Steklova, 244, 1997, 186–204
[17] Sataev I.R., Kazakov A. O., “Stsenarii perekhoda k khaosu v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 12:2 (2016), 235–250 | MR | Zbl
[18] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.
[19] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Stat.Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl