Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 17-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the generalized Suslov problem with variable parameters and the influence of random perturbations on the dynamics of the system under consideration. The physical meaning of the Suslov problem is Chaplygin's sleigh, which moves along the inner side of the circle. In the case of a deterministic system, a brief review of the previously obtained results is made, the presence of chaotic dynamics in the system and such effects as the appearance of a strange attractor and noncompact (escaping) trajectories is shown. Moreover, the latter may indicate a possible acceleration in the system. The appearance of chaotic strange attractors occurs due to a cascade of bifurcations of doubling the period. We also consider the dynamics of a perturbed system which arises due to the addition of «white noise» modeled by the Wiener process to one of the equations. Changes in the dynamics of a perturbed system compared to an unperturbed one are studied: chaotization of periodic regimes, the appearance of noncompact trajectories, and the premature destruction of strange attractors. In this paper, phase portraits, maps for the period, graphs of system solutions, and a chart of dynamical regimes are constructed using the Maple software package and the software package «Computer Dynamics: Chaos» (/http://site4.ics.org.ru//chaos_pack).
Keywords: nonholonomic system, Suslov problem, strange attractor, stochastic differential equation.
Mots-clés : random perturbations
@article{VTGU_2021_73_a1,
     author = {E. A. Mikishanina},
     title = {Investigation of the influence of random perturbations on the dynamics of the system in the {Suslov} problem},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--29},
     year = {2021},
     number = {73},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 17
EP  - 29
IS  - 73
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/
LA  - ru
ID  - VTGU_2021_73_a1
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 17-29
%N 73
%U http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/
%G ru
%F VTGU_2021_73_a1
E. A. Mikishanina. Investigation of the influence of random perturbations on the dynamics of the system in the Suslov problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 17-29. http://geodesic.mathdoc.fr/item/VTGU_2021_73_a1/

[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M., 1946

[2] Vagner V. V., “Geometricheskaya interpretatsiya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektornomu i tenzornomu analizu, 1941, no. 5, 301–327 | MR | Zbl

[3] Ifraimov S. V., Kuleshov A. S., “Ob analogii mezhdu zadachei Suslova i zadachei o dvizhenii sanei Chaplygina po sfere”, Sovremennye problemy matematiki i mekhaniki, 7, 2013, 53–60

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl

[5] Borisov A. V., Mikishanina E. A., “Two nonholonomic chaotic systems. Part I. On the Suslov problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322 | DOI | MR | Zbl

[6] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dinamika zadachi Suslova v pole sily tyazhesti: revers i strannye attraktory”, Nelineinaya dinamika, 12:2 (2016), 263–287 | MR

[7] Kozlova Z. P., “K zadache Suslova”, MTT, 1989, no. 1, 13–16

[8] Fernandez O. E., Bloch A. M., Zenkov D. V., “The geometry and integrability of the Suslov problem”, J. Math. Phys., 55:11 (2014), 112704, 14 pp. | DOI | MR | Zbl

[9] Arnold L., Stochastic Differential Equation, Wiley, New York, 1974 | MR

[10] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vved. v teoriyu i pril., per. s angl. N.I. Korolevoi, A.I. Matasova, ed. V. B. Kolmanovskii, Mir-AST, M., 2003, 406 pp.

[11] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: Teoriya i praktika chislennogo resheniya, SPbGPU, SPb., 2009, 767 pp.

[12] Kuznetsov D. F., Metody chislennogo modelirovaniya reshenii sistem stokhasticheskikh differentsialnykh uravnenii Ito v zadachakh mekhaniki, dis. ... kand. fiz.-mat.nauk, SPbGTU, SPb., 1996 | MR

[13] Kuznetsov D. F., “K probleme chislennogo modelirovaniya stokhasticheskikh sistem”, Vestnik molodykh uchenykh. Prikladnaya matematika i mekhanika, 1999, no. 2

[14] Kloeden P. E., Platen E., Schurz H., Numerical Solution of SDE Through Computer Experiments, Springer-Verlag, Berlin, 1994, 292 pp. | MR | Zbl

[15] Chang S. S., “Numerical solution of stochastic differential equations with constant diffusion coefficients”, Math. Comput., 49 (1987), 523–542 | DOI | MR | Zbl

[16] Kulchitskii O. Yu., Kuznetsov D. F., “Unifitsirovannoe razlozhenie Teilora-Ito”, Veroyatnost i statistika, Zapiski nauchnykh seminarov POMI im. V. A. Steklova, 244, 1997, 186–204

[17] Sataev I.R., Kazakov A. O., “Stsenarii perekhoda k khaosu v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 12:2 (2016), 235–250 | MR | Zbl

[18] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.

[19] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Stat.Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl