Mots-clés : Yaglom's theorem.
@article{VTGU_2021_73_a0,
author = {Kh. E. Kudratov and Ya. M. Khusanbaev},
title = {On asymptotic relations for the critical {Galton{\textendash}Watson} process},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--16},
year = {2021},
number = {73},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_73_a0/}
}
TY - JOUR AU - Kh. E. Kudratov AU - Ya. M. Khusanbaev TI - On asymptotic relations for the critical Galton–Watson process JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 5 EP - 16 IS - 73 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_73_a0/ LA - ru ID - VTGU_2021_73_a0 ER -
Kh. E. Kudratov; Ya. M. Khusanbaev. On asymptotic relations for the critical Galton–Watson process. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 73 (2021), pp. 5-16. http://geodesic.mathdoc.fr/item/VTGU_2021_73_a0/
[1] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, M., 1966
[2] Haccou P., Jagers P., Vatutin V., Branching Processes. Variation, Growth, and Extinction of Populations, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[3] Jagers P., Branching Processes with Biological Applications, John Wiley and Sons, London, 1975 | MR | Zbl
[4] Athreya K. B., Ney P., Branching Processes, Springer, Berlin, 1972, 287 pp. | MR | Zbl
[5] Asmussen S., Hering H., Branching Processes, Birkhauser, Boston, 1983, 461 pp. | MR | Zbl
[6] Mitov K. V., Mitov G. K., Yanev N. M., “Limit theorems for critical randomly indexed branching processes”, Workshop on Branching Processes and Their Applications, Springer, 2010 | MR
[7] Kolmogorov A. N., “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII mat. i mekh. Tomskogo universiteta, 2:1 (1938) | Zbl
[8] Sevastyanov B. A., “Teoriya vetvyaschikhsya sluchainykh protsessov”, UMN, VI:6 (1951) | Zbl
[9] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[10] Zolotarev V. M., “Utochnenie ryada teorem teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 2:2 (1957) | Zbl
[11] Chistyakov V. P., “Lokalnye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 2:3 (1957) | Zbl
[12] Mukhamedkhanova R., “Utochnenie predelnoi teoremy iz teorii vetvyaschikhsya sluchainykh protsessov”, Trudy Instituta matematiki im V.I. Romanovskogo, 22, Tashkent, 1961
[13] Nagaev A. V., “Utochnenie nekotorykh teorem teorii vetvyaschikhsya sluchainykh protsessov”, Trudy Instituta matematiki im V.I. Romanovskogo, 189, Tashkent, 1961
[14] Nagaev S. V., Mukhamedkhanova R., “Nekotorye predelnoi teoremy iz teorii vetvyaschikhsya sluchainykh protsessov”, Pred. teor. i stat. vyvody, Fan, Tashkent, 1966, 90–112
[15] Yaglom A. M., “Nekotorye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, DAN SSSR, 56:8 (1947), 795–798 | Zbl
[16] Spitzer F., Kesten H., Ney P., “The Galton-Watson process with mean one and finite variance”, Teoriya veroyatnostei i ee primeneniya, 11 (1966), 579–611 | MR | Zbl
[17] Kersting G., “A unifying approach to branching processes in a varying environment”, Journal of Applied Probability, 57:1 (2020), 196–220 | DOI | MR | Zbl
[18] Cardona-Tobon N., Palau S., Yaglom's limit for critical Galton-Watson processes in varying environment: A probabilistic approach, 2020, arXiv: 2005.10186 | MR
[19] Kersting G., Vatutin V. A., Discrete Time Branching Processes in Random Environment, Wiley Online Library, 2017 | MR | Zbl