Mots-clés : nanoscale particles
@article{VTGU_2021_72_a8,
author = {O. V. Matvienko and O. I. Daneyko and T. A. Kovalevskaya},
title = {A study of residual stress formation after elastoplastic deformation of pipe walls, made from disperse-hardened aluminum alloy, as a result of external pressure},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {102--117},
year = {2021},
number = {72},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_72_a8/}
}
TY - JOUR AU - O. V. Matvienko AU - O. I. Daneyko AU - T. A. Kovalevskaya TI - A study of residual stress formation after elastoplastic deformation of pipe walls, made from disperse-hardened aluminum alloy, as a result of external pressure JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 102 EP - 117 IS - 72 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_72_a8/ LA - ru ID - VTGU_2021_72_a8 ER -
%0 Journal Article %A O. V. Matvienko %A O. I. Daneyko %A T. A. Kovalevskaya %T A study of residual stress formation after elastoplastic deformation of pipe walls, made from disperse-hardened aluminum alloy, as a result of external pressure %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 102-117 %N 72 %U http://geodesic.mathdoc.fr/item/VTGU_2021_72_a8/ %G ru %F VTGU_2021_72_a8
O. V. Matvienko; O. I. Daneyko; T. A. Kovalevskaya. A study of residual stress formation after elastoplastic deformation of pipe walls, made from disperse-hardened aluminum alloy, as a result of external pressure. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 72 (2021), pp. 102-117. http://geodesic.mathdoc.fr/item/VTGU_2021_72_a8/
[1] Metyuz F., Rolings R., Kompozitnye materialy, Tekhnosfera, M., 2004, 408 pp.
[2] Karabasov Yu.S., Novye materialy, ed. Yu.S. Karabasov, MISSIS, M., 2002, 736 pp.
[3] Arnhold V., Hummert K., New Materials by Mechanical Alloying Techniques, eds. E. Arzt, L. Schultz, DGM Informationsgeselischaft Verlag, Oberursel, 1989, 263 pp.
[4] Matvienko O., Daneyko O., Kovalevskaya T., “Mathematical modeling of nanodispersed hardening of FCC materials”, Acta Metallurgica Sinica (English Letters), 31:12 (2018), 1297–1304 | DOI
[5] Luts A.R., Galochkina I.A. (sost.), Alyuminievye kompozitsionnye splavy — splavy buduschego, Samar. gos. tekhn. un-t, Samara, 2013, 82 pp.
[6] Vorozhtsov S., Zhukov I., Promakhov V., Naydenkin E., Khrustalyov A., Vorozhtsov A., “The influence of ScF3 nanoparticles on the physical and mechanical properties of new metal matrix composites based on A356 aluminum alloy”, JOM, 68:12 (2016), 3101–3106 | DOI
[7] Weber J.H., Schelleng R.D., Dispersion-Strengthened Aluminum Alloys, eds. Y.-W. Kim, W.M. Griffith, TMS, Warrendale, 1988, 468 pp.
[8] Orowan E., Proceedings of Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 1948, 451–454
[9] Stewart A.T., Martin J.W., “Dislocation-particle interactions in plastically deformed two-phase aluminium crystals”, Acta Materialia, 23 (1975), 1–7 | DOI
[10] Matvienko O., Daneyko O., Kovalevskaya T., “Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy in an inhomogeneous temperature field”, Crystals, 10 (2020), 1103, 18 pp. | DOI
[11] Wang G., Wang Q., Easton M.A., Dargusch M.S., Qian M., Eskin D.G., Stjohn D.H., “Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium”, Scientific Reports, 7 (2017), 9729 | DOI
[12] Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y., “Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later”, JOM, 68:4 (2016), 1216–1226 | DOI
[13] Vorozhtsov S., Minkov L., Khrustalyov A., Dammer V., Zhukov I., Promakhov V., Vorozhtsov A., Khmeleva M., “Ex situ introduction and distribution of nonmetallic particles in aluminum melt: modeling and experiment”, JOM, 69:12 (2017), 2653–2657 | DOI
[14] Vorozhtsov A.B., Platov V.V., Kozulin A.A., Khrustalev A.P., Mishin I.P., Zhukov I.A., “Issledovanie vliyaniya chastits TIB2 na strukturu, deformatsionnoe povedenie i svoistva alyuminievogo splava 1550”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 67, 102–116 | DOI
[15] Ashby M.F., Johnson K., Materials and Design, the Art and Science of Materials Selection in Product Design, Butterworth Heinemann, Oxford, 2002, 390 pp.
[16] Gould D., Hirsch P.B., Humphreys F.J., “The Bauschinger effect, work-hardening and recovery in dispersion-hardened copper crystals”, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 30:6 (1974), 1353–1377 | DOI
[17] Hymphreys F.J., Martin J.W., “The effect of dispersed phases upon dislocation distributions in plastically deformed copper crystals”, Philosophical Magazine, 16:143 (1967), 927–957 | DOI
[18] Kropfl O., Vohringer E., “Creep behavior of dispersion-hardened aluminum materials”, Mechanics of Time-Dependent Materials, 3 (1999), 1–13 | DOI
[19] Kulaeva N.A., Daneiko O.I., Kovalevskaya T.A., Starenchenko V.A., “Vliyanie masshtabnykh kharakteristik uprochnyayuschei fazy so sverkhstrukturoi L12 na evolyutsiyu dislokatsionnykh dipolei v protsesse plasticheskoi deformatsii”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 21:3 (2016), 1089–1092 | DOI
[20] Kovalevskaya T.A., Kolupaeva S.N., Daneiko O.I., Kulaeva N.A., Semenov M.E., “Vliyanie masshtabnykh kharakteristik uprochnyayuschei fazy na evolyutsiyu defektnoi podsistemy v geterofaznykh materialakh s GTsK matritsei”, Materialovedenie, 2011, no. 8, 6–11
[21] Stacey A., Webster G.A., “Determination of residual stress distributions in autofrettaged tubing”, International Journal of Pressure Vessels and Piping, 31:3 (1998), 205–220 | DOI
[22] Birger I.A., Ostatochnye napryazheniya, Mashgiz, M., 1963, 231 pp.
[23] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Ostatochnye napryazheniya v trube iz splava, uprochnennogo nekogerentnymi nanochastitsami posle razgruzki iz uprugoplasticheskogo sostoyaniya”, Izv. vuzov. Fizika, 61:4 (2018), 113–124
[24] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Vliyanie razmerov uprochnyayuschikh nanochastits na ostatochnye napryazheniya v trube iz dispersno-uprochnennogo splava”, Izv. vuzov. Fizika, 61:5 (2018), 140–150
[25] Matvienko O., Daneyko O., Kovalevskaya T., “Mathematical modeling of nanodispersed hardening of FCC materials”, Acta Metallurgica Sinica (English Letters), 31:12 (2018), 1297–1304 | DOI
[26] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Issledovanie vliyaniya raspredeleniya temperatury na napryazhenno-deformirovannoe sostoyanie stenok truby iz dispersnouprochnennogo splava”, Fundamentalnye problemy sovremennogo materialovedeniya, 17:3 (2020), 330–337 | DOI
[27] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Issledovanie plasticheskoi deformatsii tolstostennoi truby iz splava, uprochnennogo nekogerentnymi nanochastitsami”, Izv. vuzov. Fizika, 60:2 (2017), 35–45
[28] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Napryazhenno-deformiruemoe sostoyanie nagruzhennoi truby iz splava, uprochnennogo nekogerentnymi nanochastitsami”, Izv. vuzov. Fizika, 60:4 (2017), 7–13
[29] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Issledovanie formirovaniya dislokatsionnoi struktury nagruzhennoi ravnomernym vnutrennim davleniem truby iz splava, uprochnennogo nekogerentnymi nanochastitsami”, Izv. vuzov. Fizika, 60:7 (2017), 133–141
[30] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Uprugoplasticheskaya deformatsiya truby iz dispersno-uprochnennogo alyuminiya pod deistviem vneshnego davleniya”, Izv. vuzov. Fizika, 61:8 (2018), 138–145
[31] Matvienko O.V., Daneiko O.I, Kovalevskaya T.A., “Uprugoplasticheskaya deformatsiya truby iz dispersno-uprochnennogo alyuminiya pod deistviem vneshnego i vnutrennego davleniya”, Izv. vuzov. Fizika, 62:4 (2019), 144–151
[32] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Napryazhennoe sostoyanie stenok truby iz dispersno-uprochnennogo alyuminiya pod deistviem vneshnego i vnutrennego davleniya”, Izv. vuzov. Fizika, 62:10 (2019), 50–57
[33] Matvienko O., Daneyko O., Kovalevskaya T., “Mathematical modeling of plastic deformation of a tube fromdispersion-hardened aluminum alloy”, MATEC Web of conferences, 243 (2018), 00008, 6 pp. | DOI
[34] Matvienko O.V., Daneiko O.I., Kovalevskaya T.A., “Napryazhennoe sostoyanie stenok sostavnoi truby iz dispersno-uprochnennogo alyuminiya pod deistviem vnutrennego davleniya”, Izv. vuzov. Fizika, 63:5 (2020), 64–73
[35] Daneiko O.I., Kovalevskaya T.A., Matvienko O.V., “Vliyanie nanorazmernykh nekogerentnykh chastits na prochnostnuyu termicheskuyu stabilnost legkikh splavov na osnove alyuminiya”, Izv. vuzov. Fizika, 61:7(727) (2018), 40–46
[36] Timoshenko S.P., Goodier J.N., Theory of Elasticity, Mcgraw Hill, New York, 2010, 567 pp.
[37] Malinin N.N., Prikladnaya teoriya plastichnosti i polzuchesti, Mashinostroenie, M., 1975