Mots-clés : SIMPLE.
@article{VTGU_2021_72_a7,
author = {Z. M. Malikov and M. E. Madaliev},
title = {Numerical study of a swirling turbulent flow through a channel with an abrubt expansion},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {93--101},
year = {2021},
number = {72},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_72_a7/}
}
TY - JOUR AU - Z. M. Malikov AU - M. E. Madaliev TI - Numerical study of a swirling turbulent flow through a channel with an abrubt expansion JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 93 EP - 101 IS - 72 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_72_a7/ LA - ru ID - VTGU_2021_72_a7 ER -
%0 Journal Article %A Z. M. Malikov %A M. E. Madaliev %T Numerical study of a swirling turbulent flow through a channel with an abrubt expansion %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 93-101 %N 72 %U http://geodesic.mathdoc.fr/item/VTGU_2021_72_a7/ %G ru %F VTGU_2021_72_a7
Z. M. Malikov; M. E. Madaliev. Numerical study of a swirling turbulent flow through a channel with an abrubt expansion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 72 (2021), pp. 93-101. http://geodesic.mathdoc.fr/item/VTGU_2021_72_a7/
[1] Versteegh T.A., Nieuwstadt F.T.M., “Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel”, Intern. J. Heat Fluid Flow, 19 (1998), 135–149
[2] Boudjemadi R., Maupu V., Laurence D., Le Quere P., “Direct numerical simulation of natural convection in a vertical channel: A tool for second-moment closure modelling”, Proc. Engineering Turbulence Modelling and Experiments, v. 3, Elsevier, Amsterdam, 1996, 39
[3] Peng S.-H., Davidson L., “Large eddy simulation of turbulent buoyant flow in a confined cavity”, Intern. J. Heat Fluid Flow, 22 (2001), 323–331
[4] Cabot W., Moin P., “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow”, Flow, Turbulence and Combustion, 63 (1999), 269–291
[5] Sentyabov A.V., Gavrilov A.A., Dekterev A.A., “Issledovanie modelei turbulentnosti dlya rascheta zakruchennykh techenii”, Teplofizika i aeromekhanika, 18:1 (2011), 81–94
[6] Hellsten A., “New advanced $k$-$\omega$ turbulence model for high-lift aerodynamics”, AIAA Journal, 43:9 (2005), 1857–1869
[7] Vallin S., Iokhansson A.V., “Yavnaya algebraicheskaya model napryazhenii Reinoldsa dlya neszhimaemykh i szhimaemykh turbulentnykh techenii”, Zhidkostnaya mekhanika, 403 (2000), 89–132
[8] Malikov Z.M., Madaliev M.E., “Numerical simulation of two-phase flow in a centrifugal separator”, Fluid dynamics, 55:8 (2020), 1012–1028
[9] Dellenback P.A., Metzger D.E., Neitzel G.P., “Measurements in turbulent swirling flow through an abrupt axisymmetric expansion”, AIAA J., 26:6 (1988), 669–681
[10] Leibovich S., “Vortex stability and breakdown: survey and extension”, AIAA J., 22 (1984), 1192–1206
[11] Wang P., Bai X.S., Wessman M., Klingmann J., “Large eddy simulation and experimental studies of a confined turbulent swirling flow”, Phys. Fluids, 16 (2004), 3306–3324 | DOI
[12] Gyllenram W., Nilsson H., Davidson L., “On the failure of the quasi-cylindrical approximation and the connection to vortex breakdown in turbulent swirling flow”, Phys. Fluids, 19 (2007), 045108
[13] Nilsson H., “Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load”, 26th IAHR Symposium on Hydraulic Machinery and Systems (Beijing, China, 2012)
[14] Mak H., Balabani S., “Near field characteristics of swirling flow past a sudden expansion”, Chem. Eng. Sci., 62 (2007), 6726–6746
[15] Gyllenram W., Nilsson H., Davidson L., “Large eddy simulation of turbulent swirling flow through a sudden expansion”, 23rd IAHR Symposium on Hydraulic Machinery and Systems (Yokohama, Japan, 2006)
[16] Gyllenram W., Nilsson H., “Design and validation of a scale-adaptive filtering technique for LRN turbulence modeling of unsteady flow”, J. Fluid Eng.-T ASME, 130:5 (2008)
[17] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp.
[18] Wilcox D.C., Turbulence Modeling for CFD, California, 1994
[19] Launder B.E., Reece G.J., Rodi W., “Progress in the development of a Reynolds - stress turbulence closure”, J. Fluid Mech., 68 (1975), 537–566
[20] Speziale C.G., Sarkar S., Gatski T.B., “Modeling the pressure strain correlation of turbulence: an invariant dynamical systems approach”, J. Fluid Mech., 227 (1991), 245–272
[21] Nazarov F.X., Malikov Z.M., Rakhmanov N.M., “Simulation and numerical study of two-phase flow in a centrifugal dust catcher”, AMSD-2019, Journal of Physics: Conference Series, 1441, 2020, 012155 | DOI
[22] Julianne C. Dudek., Jan-Renee Carlson, Evaluation of full Reynolds stress turbulence models in Fun3D, NASA/TM-219468 (Texas, January 9–13, 2017), 2017, 36 pp.
[23] Turubaev R.R., Shvab A.V., “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98
[24] Khmeleva M.G., Dammer V.Kh., Tokhmetova A.B., Minkov L.L., “Chislennoe issledovanie vikhreobrazovaniya v zhidkom metalle pod deistviem diskovogo zavikhritelya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 46, 76–85
[25] Malikov Z.M., Madaliev M.E., “Matematicheskoe modelirovanie turbulentnogo techeniya v tsentrobezhnom separatore”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 71, 121–138