@article{VTGU_2021_72_a4,
author = {Kh. M. Gamzaev},
title = {Simulation of an unsteady incompressible fluid flow through a perforated pipeline},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {60--69},
year = {2021},
number = {72},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_72_a4/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - Simulation of an unsteady incompressible fluid flow through a perforated pipeline JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 60 EP - 69 IS - 72 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_72_a4/ LA - ru ID - VTGU_2021_72_a4 ER -
Kh. M. Gamzaev. Simulation of an unsteady incompressible fluid flow through a perforated pipeline. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 72 (2021), pp. 60-69. http://geodesic.mathdoc.fr/item/VTGU_2021_72_a4/
[1] Marshall E.A., Trowbridge E.A., “Flow of a Newtonian fluid through a permeable tube: The application to the proximal renal tubule”, Bulletin of Mathematical Biology, 36 (1974), 457–476
[2] Ross S.M., “A mathematical model of mass transport in a long permeable tube with radial convection”, Journal of Fluid Mechanics, 63:4, 157–175
[3] Pozrikidis C., “Stokes flow through a permeable tube”, Archive of Applied Mechanics, 80:4 (2010), 323–333 | DOI
[4] Zhang Q., Wang Z., “Modeling study on fluid flow in horizontal perforated pipes with wall influx”, International Journal of Fluid Mechanics Research, 41:6 (2014), 556–566 | DOI
[5] Elshahed M., “Blood flow in capillary under starling hypothesis”, Applied Mathematics and Computation, 149:2 (2004), 431–439
[6] Muthu P., Berhane T., “Mathematical model of flow in renal tubules”, International Journal of Applied Mathematics and Mechanics, 6:20 (2010), 94–107
[7] Mariamma N.K., Majhi S.N., “Flow of a Newtonian Fluid in a blood vessel with permeable wall — a theoretical model”, Computers Mathematics with Applications, 40:12 (2000), 1419–1432
[8] Gamzaev Kh.M., “Obratnaya zadacha nestatsionarnogo techeniya neszhimaemoi zhidkosti v trube s pronitsaemoi stenkoi”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 12:1 (2020), 24–30
[9] Merzlyakov A.V., Kryukova E.A., “Svobodnye kolebaniya idealnoi zhidkosti v pryamougolnom sosude s gorizontalnoi pronitsaemoi peregorodkoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 107–118 | DOI
[10] Thomas C., “Flow in perforated pipes: A comparison of models and experiments”, SPE Production Operations, 21:2 (2006), 302–311
[11] Zhang Q., Wang Z., Wang X., Zhai Y., Wei J., Gao Q., “Analysis of the modeling of singlephase flow in a perforated pipe with wall fluid influx”, Applied Mechanics and Materials, 275–277 (2013), 491–495
[12] Lure M.V., Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza, RGU nefti i gaza im. I.M. Gubkina, M., 2012, 456 pp.
[13] Alifanov O.M., Inverse heat transfer problems, Springer, Berlin, 2011, 280 pp.
[14] Samarskii A. A., Vabishchevich P.N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, 2007, 438 pp.
[15] Vabishchevich P.N., Vasil'ev V.I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Problems in Science and Engineering, 24:1 (2016), 42–59 | DOI
[16] Gamzaev Kh.M., “Numerical method of pipeline hydraulics identification at turbulent flow of viscous liquids”, Pipeline Science and Technology, 3:2 (2019), 118–124 | DOI