Mots-clés : tridiagonal matrix algorithm, noslip condition, SIMPLE.
@article{VTGU_2021_71_a9,
author = {Z. M. Malikov and M. E. Madaliev},
title = {Mathematical modeling of a turbulent flow in a centrifugal separator},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {121--138},
year = {2021},
number = {71},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a9/}
}
TY - JOUR AU - Z. M. Malikov AU - M. E. Madaliev TI - Mathematical modeling of a turbulent flow in a centrifugal separator JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 121 EP - 138 IS - 71 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a9/ LA - ru ID - VTGU_2021_71_a9 ER -
%0 Journal Article %A Z. M. Malikov %A M. E. Madaliev %T Mathematical modeling of a turbulent flow in a centrifugal separator %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 121-138 %N 71 %U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a9/ %G ru %F VTGU_2021_71_a9
Z. M. Malikov; M. E. Madaliev. Mathematical modeling of a turbulent flow in a centrifugal separator. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 121-138. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a9/
[1] Gupta A., Lili D., Saired N., Zakruchennye potoki, Mir, M., 1987, 590 pp.
[2] Muntean S., Susan-Resiga R. F., Bosioc A. I., “Numerical investigation of the jet control method for swirling flow with precessing vortex rope”, Proc. 3th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinary and Systems (October 14–16, 2009, Brno, Czech Republic)
[3] Okulov V. L., Sorensen J. N., “Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches”, Journal of Fluid Mechanics, 649 (2010), 497–508 | DOI | Zbl
[4] Syred N., “A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems”, Prog. Energy Combust. Sci., 32:2 (2006), 93–161 | DOI
[5] Derksen J. J., “Separation performance predictions of a Stairmand high-efficiency cyclone”, AIChEJ, 49:6 (2003), 1359–1371 | DOI
[6] Spalart P. R., Allmaras S. R., “A one-equation turbulence model for aerodynamic flow”, AIAA Paper, 12:1 (1992), 439–478
[7] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp.
[8] Bradshaw P., Ferriss D. H., Atwell N. P., “Calculation of boundary layer development using the turbulent energy equation”, J. Fluid Mech., 28 (1967), 593–616 | DOI
[9] von Mises R., “Bemerkungen zur Hydrodinamik”, Zeitschrift fur Angewandte Mathematik und Mechanik, 7 (1927), 425 | Zbl
[10] Patankar S. V., Numerical Heat Transfer and Fluid Flow, Taylor, 1980
[11] Launder B. E., Spalding D. B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972, 169 pp. | Zbl
[12] Malikov Z. M., Iuldashev A. T., Madaliev M. E., “Eksperimentalnoe issledovanie effektivnosti tsentrobezhnogo vozdushno-prokhodnogo separatora”, Problemy mekhaniki, 2019, no. 3, 27–30
[13] Madaliev M. E., “Numerical solution of the problem on a centrifugal separator based on SA and SARC turbulence models”, International Journal of Advanced Research in Science, Engineering and Technology, 6:7 (2019), 10118–10124
[14] Vasilevskii M. V., Zykov E. G., Raschet effektivnosti ochistki gaza v inertsionnykh apparatakh, Izd-vo TPU, Tomsk, 2005, 86 pp.
[15] Shilyaev M. I., Shilyaev A. M., “Modelirovanie protsessa pyleulavlivaniya v pryamotochnom tsiklone. 1. Aerodinamika i koeffitsient diffuzii chastits v tsiklonnoi kamere”, Teplofizika i aeromekhanika, 10:2 (2003), 157–170
[16] Shilyaev M. I., Shilyaev A. M., “Modelirovanie protsessa pyleulavlivaniya v pryamotochnom tsiklone. 2. Raschet fraktsionnogo koeffitsienta proskoka”, Teplofizika i aeromekhanika, 10:3 (2003), 427–437
[17] Baranov D. A., Kutepov A. M., Lagutkin M. G., “Raschet separatsionnykh protsessov v gidrotsiklonakh”, Teoreticheskie osnovy khimicheskoi tekhnologii, 30:2 (1996), 117–122
[18] Akhmetov T. G., Porfileva R. T., Gaisin L. G., Khimicheskaya tekhnologiya neorganicheskikh veschestv, v. 1, Vysshaya shkola, M., 2002, 688 pp.
[19] Platonov D. V., Minakov A. V., Dekterev A. A., Sentyabov A. V., “Chislennoe modelirovanie prostranstvennykh techenii s zakrutkoi potoka”, Kompyuternye issledovaniya i modelirovanie, 5:4 (2013), 635–648
[20] Turubaev R. R., Shvab A. V., “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98
[21] Khmeleva M. G., Dammer V. Kh., Tokhmetova A. B., Minkov L. L., “Chislennoe issledovanie vikhreobrazovaniya v zhidkom metalle pod deistviem diskovogo zavikhritelya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 46, 76–85
[22] Borzenko E. I., Ryltseva K. E., Shrager G. R., “Chislennoe issledovanie kharakteristik techeniya nenyutonovskoi zhidkosti v trube s vnezapnym suzheniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 58, 56–78