Finite deformations of a toroidal shell
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 106-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stress-strain state of a nonlinear elastic shell exposed to the internal pressure is considered. A surface of the shell is toroidal in shape in the initial state. The Lagrangian coordinates of the shell are assigned to a cylindrical system. The kinematic characteristics of the process are shown: a law of the motion of points, vectors of a material basis, a strain affinor and its polar decomposition, the Cauchy-Green strain measure and tensor, the Finger measure, and the “left” and the“right” Hencky strain tensors. Neglecting the shear components of the stress tensor, a constitutive relation is obtained as a quasilinear relation between true stress tensor and the Hencky corotation tensor. A system of equilibrium equations is presented in terms of physical components of the true stress tensor in the Lagrangian coordinates. Using the equilibrium equations and the incompressibility condition, a closed system of nonlinear ordinary differential equations is obtained to determine six unknown functions, depending on the angle indicating a position of the points along the cross-section in the initial state. The method of successive approximations is applied to estimate stress tensor components and to derive logarithms of the elongations of material fibers.
Keywords: toroidal shell, nonlinear elasticity, method of successive approximations.
Mots-clés : constitutive relations
@article{VTGU_2021_71_a8,
     author = {V. V. Kozlov and A. A. Markin},
     title = {Finite deformations of a toroidal shell},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {106--120},
     year = {2021},
     number = {71},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a8/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - A. A. Markin
TI  - Finite deformations of a toroidal shell
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 106
EP  - 120
IS  - 71
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a8/
LA  - ru
ID  - VTGU_2021_71_a8
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A A. A. Markin
%T Finite deformations of a toroidal shell
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 106-120
%N 71
%U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a8/
%G ru
%F VTGU_2021_71_a8
V. V. Kozlov; A. A. Markin. Finite deformations of a toroidal shell. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 106-120. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a8/

[1] Marchuk M. V., Tuchapskii R. I., “Dynamics of geometrically nonlinear elastic nonthin anisotropic shells of variable thickness”, International Applied Mechanics, 53 (2017), 655667 | DOI

[2] Cowley J., Mulholland A., Gachagan A. A., “Nonlinear elasticity approach to modelling the collapse of a shelled microbubble”, IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 82 (2017), 781–801 | DOI | Zbl

[3] Dolgikh D. V., Kiselev V. V., “Upravlenie deformirovaniem krugovoi tsilindricheskoi obolochki”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2019, no. 6, 54–67 | DOI

[4] Kiselev V. V., Dolgikh D. V., “Vliyanie zhestkikh svyazei na izmenenie formy gidrostaticheski szhatoi obolochki”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2017, no. 3, 178–189 | DOI | Zbl

[5] Zhgutov V. M., “Nelineinye uravneniya ravnovesiya rebristykh obolochek c uchetom razlichnykh svoistv materiala”, Inzhenerno-stroitelnyi zhurnal, 2010, no. 2 (12), 36–44 | DOI

[6] Makhutov N. A., Scheglov B. A., Evdokimov A. P., “Nelineinaya uprugost toroobraznykh rezinokordnykh obolochek v rezhime staticheskogo nagruzheniya”, Problemy mashinostroeniya i nadezhnosti mashin, 2006, no. 2, 27–36

[7] Vereschaka S. M., Zhigilii D. A., Karash I. T., Deineka A. V., “Konstruktsionnaya prochnost toroobraznykh ballonov vysokogo davleniya”, Vestnik SevNTU: sbornik nauchnykh trudov. Seriya: «Mekhanika, energetika, ekologiya», 2012, no. 133, 329–334

[8] Fursaev S. A., “Deformirovanie toroobraznykh obolochek s uchetom rezhima sverkhplastichnosti”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2009, no. 1, 71–82

[9] Bakusov P. A., Semenov A. A., “Ustoichivost segmentov toroidalnykh obolochek pri izmenenii ugla otkloneniya ot vertikalnoi osi”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2017, no. 3, 17–36 | DOI

[10] Jiammeepreecha W., Chucheepsakul S., “Nonlinear static analysis of an underwater elastic semi-toroidal shell”, Thin-Walled Structures, 116 (2017), 12–18 | DOI

[11] Chernyshenko I. S., Maksimyuk V. A., “On the stress-strain state of toroidal shells of elliptical cross section formed from nonlinear elastic orthotropic materials”, International Applied Mechanics, 36:1 (2000), 90–97 | DOI | Zbl

[12] Buyakov I. A., Lysenko A. V., “Osobennost osesimmetrichnogo deformirovaniya naduvnoi toroobraznoi obolochki pri vozdeistvii vneshnego davleniya”, Kosmonavtika i raketostroenie, 2014, no. 6 (79), 56–58

[13] Zhu Y., Shen B., Zhao B., Zhao X., Tang W., Wang X., “Buckling characteristics of externally pressurised toroidal shell”, Ships and Offshore Structures, 2019 | DOI

[14] Evdokimov A. P., “Nelineinaya uprugost toroobraznykh rezinokordnykh obolochek soedinitelnykh muft burovogo oborudovaniya”, Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2012, no. 1, 31–36

[15] Sabirov R. A., “K raschetu deformirovaniya myagkoi toroidalnoi obolochki”, Reshetnevskie chteniya, materialy XXI Mezhdunar. nauch.-prakt. konf., posvyasch. pamyati generalnogo konstruktora raketno-kosmicheskikh sistem akademika M. F. Reshetneva, v 2 ch. (8–11 noyab. 2017, g. Krasnoyarsk), v. 2, ed. Yu.Yu. Loginov, 2017, 25–27

[16] Jiammeepreecha W., Suebsuk J., Chucheepsakul S., “Nonlinear static analysis of liquid-containment toroidal shell under hydrostatic pressure”, Journal of Structural Engineering, 146:1 (2020) | DOI

[17] Vilenkin N. Ya., Metod posledovatelnykh priblizhenii, Nauka, M., 1968, 108 pp.

[18] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp.

[19] Markin A. A., Sokolova M. Yu., Termomekhanika uprugoplasticheskogo deformirovaniya, Fizmatlit, M., 2013, 320 pp.

[20] Markin A. A., Khristich D. V., Nelineinaya teoriya uprugosti, ucheb. posobie, 2-e izd., dop., Izd-vo TulGU, Tula, 2007, 92 pp.

[21] Birger I. A., Panovko Ya. G., Prochnost, ustoichivost, kolebaniya, Spravochnik, v 3 t., v. 1, Mashinostroenie, M., 1968, 831 pp.